Brain aging in rats and humans is accompanied by evidence of lysosomal abnormalities; these are particularly pronounced in AIzheimer's disease. Moreover, suppression of lysosomal proteases with drugs such as chloroquine or Z-Phe-Ala-diazomethylketone produces a diverse array of changes found in the aged brain. The proposed research will use a recently introduced cultured brain slice technique to test for interactions between lysosomal dysfunction and two other age-associated phenomena: pathogenesis and the accumulation of beta-amyloid containing peptides. Project One will determine if inhibition of lysosomal enzymes increases the vulnerability of hippocampus to an excitotoxin. Project Two will address the converse question; i.e., do excitotoxins enhance the effects of lysosomal dysfunction? Project Three will test if beta-amyloid 1-42 acts as a lysosomotropic agent when applied directly to cultured hippocampal slices. Finally, Project Four will test for synergisms between beta-amyloid 1-42 and lysosomal inhibition with regard to the production of age-related effects. These studies should provide information directly pertinent to the causes of pathogenesis in the aged brain and could provide a model system with which to explore potential therapeutic interventions.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG000538-21
Application #
6233928
Study Section
Project Start
1997-08-01
Project End
1998-06-30
Budget Start
1996-10-01
Budget End
1997-09-30
Support Year
21
Fiscal Year
1997
Total Cost
Indirect Cost
Name
University of California Irvine
Department
Type
DUNS #
161202122
City
Irvine
State
CA
Country
United States
Zip Code
92697
Sosna, Justyna; Philipp, Stephan; Albay 3rd, Ricardo et al. (2018) Early long-term administration of the CSF1R inhibitor PLX3397 ablates microglia and reduces accumulation of intraneuronal amyloid, neuritic plaque deposition and pre-fibrillar oligomers in 5XFAD mouse model of Alzheimer's disease. Mol Neurodegener 13:11
Tong, Liqi; Prieto, G Aleph; Cotman, Carl W (2018) IL-1? suppresses cLTP-induced surface expression of GluA1 and actin polymerization via ceramide-mediated Src activation. J Neuroinflammation 15:127
Hainsworth, A H; Lee, S; Foot, P et al. (2018) Super-resolution imaging of subcortical white matter using stochastic optical reconstruction microscopy (STORM) and super-resolution optical fluctuation imaging (SOFI). Neuropathol Appl Neurobiol 44:417-426
Krotee, Pascal; Griner, Sarah L; Sawaya, Michael R et al. (2018) Common fibrillar spines of amyloid-? and human islet amyloid polypeptide revealed by microelectron diffraction and structure-based inhibitors. J Biol Chem 293:2888-2902
Prieto, G Aleph; Tong, Liqi; Smith, Erica D et al. (2018) TNF? and IL-1? but not IL-18 Suppresses Hippocampal Long-Term Potentiation Directly at the Synapse. Neurochem Res :
Prieto, G Aleph; Cotman, Carl W (2017) On the road towards the global analysis of human synapses. Neural Regen Res 12:1586-1589
Chen, E Y; Chu, S; Gov, L et al. (2017) CD200 modulates macrophage cytokine secretion and phagocytosis in response to poly(lactic co-glycolic acid) microparticles and films. J Mater Chem B 5:1574-1584
Snigdha, Shikha; Yassa, Michael A; deRivera, Christina et al. (2017) Pattern separation and goal-directed behavior in the aged canine. Learn Mem 24:123-131
Hernandez, Michael X; Namiranian, Pouya; Nguyen, Eric et al. (2017) C5a Increases the Injury to Primary Neurons Elicited by Fibrillar Amyloid Beta. ASN Neuro 9:1759091416687871
Hatami, Asa; Monjazeb, Sanaz; Milton, Saskia et al. (2017) Familial Alzheimer's Disease Mutations within the Amyloid Precursor Protein Alter the Aggregation and Conformation of the Amyloid-? Peptide. J Biol Chem 292:3172-3185

Showing the most recent 10 out of 281 publications