Aging is inevitable. It is governed by both inheritance and environmental factors. A deeper understanding of the aging process might allow us to slow its progression or at least delay the onset of age-associated diseases, and thus extend the well being of individuals. The universality in the decline of energy with age highlights energy metabolism and the role of role mitochondria (mt) in aging. A widely accepted???but still unproven theory of aging centers on the accumulation of cellular damage by the generafion of reacfive oxygen species. In cells, reactive oxygen species are generated in mitochondria and have been demonstrated to damage mitochondrial DNA. Since DNA repair is limited in mitochondria, some of this damage may go on to cause mutafions when the DNA is replicated. We have developed, established, and validated excepfionally sensifive assays to quantify mutafions in nuclear and mitochondrial DNA.
Our specific aims will be focused in two direcfions: 1) We will determine the frequency and types of mutations that increase in different fissues during aging in humans. We will analyze the mechanism by which specific mitochondrial mutations are be selective amplified. 2) Our focus will be on Parkinson syndrome, one of the most prevalent age-dependent neurological diseases. Using cell culture and mouse models, we will examine the contribufion of reactive oxygen species to mitochondrial mutagenesis. Most importanfiy, we will ascertain if selectively amplified mitochondrial mutafions can provide a marker for diagnosis of Parkinson syndrome and or monitoring of disease progression and response to treatment.

Public Health Relevance

The goal of this project is to determine the mechanism for the generafion ofmitochondial DNA mutations during normal aging and in age-associated diseases. If these mutafions are generated by oxygen metabolism, it should be feasible to decrease their production by specific anfi-oxidants that target mitochondria, and thus the progression of age-associated diseases. We will investigate the generafion of mitochondrial mutations in one of the most prevalent aae-associated neurolnaioal diseases. Parkinson

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG001751-31
Application #
8643174
Study Section
Special Emphasis Panel (ZAG1-ZIJ-6)
Project Start
Project End
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
31
Fiscal Year
2014
Total Cost
$301,596
Indirect Cost
$106,388
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Basisty, Nathan B; Liu, Yuxin; Reynolds, Jason et al. (2018) Stable Isotope Labeling Reveals Novel Insights Into Ubiquitin-Mediated Protein Aggregation With Age, Calorie Restriction, and Rapamycin Treatment. J Gerontol A Biol Sci Med Sci 73:561-570
Kramer, Philip A; Duan, Jicheng; Gaffrey, Matthew J et al. (2018) Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle. Redox Biol 17:367-376
Zhang, Huiliang; Gong, Guohua; Wang, Pei et al. (2018) Heart specific knockout of Ndufs4 ameliorates ischemia reperfusion injury. J Mol Cell Cardiol 123:38-45
Ge, Xuan; Ciol, Marcia A; Pettan-Brewer, Christina et al. (2017) Self-motivated and stress-response performance assays in mice are age-dependent. Exp Gerontol 91:1-4
Sweetwyne, Mariya T; Pippin, Jeffrey W; Eng, Diana G et al. (2017) The mitochondrial-targeted peptide, SS-31, improves glomerular architecture in mice of advanced age. Kidney Int 91:1126-1145
Liu, Sophia Z; Marcinek, David J (2017) Skeletal muscle bioenergetics in aging and heart failure. Heart Fail Rev 22:167-178
Kruse, Shane E; Karunadharma, Pabalu P; Basisty, Nathan et al. (2016) Age modifies respiratory complex I and protein homeostasis in a muscle type-specific manner. Aging Cell 15:89-99
Loeb, Lawrence A (2016) Human Cancers Express a Mutator Phenotype: Hypothesis, Origin, and Consequences. Cancer Res 76:2057-9
Chiao, Ying Ann; Kolwicz, Stephen C; Basisty, Nathan et al. (2016) Rapamycin transiently induces mitochondrial remodeling to reprogram energy metabolism in old hearts. Aging (Albany NY) 8:314-27
Campbell, Matthew D; Marcinek, David J (2016) Evaluation of in vivo mitochondrial bioenergetics in skeletal muscle using NMR and optical methods. Biochim Biophys Acta 1862:716-724

Showing the most recent 10 out of 285 publications