As a core facility, the Morphological Studies Core will continue to be a resource for this competitive renewal of the Program Project. Its function is to provide documentation of the gross and histological findings of the knee joint specimens studied by the respective projects. This descriptive information will be correlated with the specific measurements of each project, providing a multidisciplinary analysis of age-related changes in human knee joint tissue.
The Specific Aims of the Morphology Core are: A) Harvest knee joints and perichondrium at autopsy from donors of both genders, all races and all decades from the second to the ninth. B) Make observations and classify and degenerative changes in human knee joints obtained from both genders and all age groups at the time of autopsy. The classification score developed in our laboratories will be utilized to quantify gross morphological changes. C) Harvest cartilage from human knee joints obtained at autopsy for distribution to the tissue culture core. Perichondrial tissue will be provided for projects 2 and 4 and the tissue culture core. D) Take representative osteochondral sections from the human knee joints for processing and assessment using qualitative observations and quantitative histomorphometric measurements using an image analysis system recently developed. Parameters to be measured by histomorphometry are: cartilage roughness, cell count and cell density, and safranin 0 density. In addition, the thickness of the osteochondral plate will be measured and its density will be determined by obtaining microradiographs of the cut slabs using a Faxitron x-ray unit, and comparing the bone density with an aluminum step wedge control. E) Interpret the results of the measurements on the osteochondral sections, and correlate these results with measurements obtained from the other grant projects.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG007996-11
Application #
6442474
Study Section
Project Start
2001-04-01
Project End
2002-03-31
Budget Start
Budget End
Support Year
11
Fiscal Year
2001
Total Cost
Indirect Cost
Name
Scripps Research Institute
Department
Type
DUNS #
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Chen, Liang-Yu; Lotz, Martin; Terkeltaub, Robert et al. (2018) Modulation of matrix metabolism by ATP-citrate lyase in articular chondrocytes. J Biol Chem 293:12259-12270
Matsuzaki, Tokio; Alvarez-Garcia, Oscar; Mokuda, Sho et al. (2018) FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis. Sci Transl Med 10:
Su, Alvin W; Chen, Yunchan; Dong, Yao et al. (2018) Biomechanics of osteochondral impact with cushioning and graft Insertion: Cartilage damage is correlated with delivered energy. J Biomech 73:127-136
Abhishek, Abhishek; Neogi, Tuhina; Choi, Hyon et al. (2018) Review: Unmet Needs and the Path Forward in Joint Disease Associated With Calcium Pyrophosphate Crystal Deposition. Arthritis Rheumatol 70:1182-1191
Fisch, K M; Gamini, R; Alvarez-Garcia, O et al. (2018) Identification of transcription factors responsible for dysregulated networks in human osteoarthritis cartilage by global gene expression analysis. Osteoarthritis Cartilage 26:1531-1538
Ramdani, Ghania; Schall, Nadine; Kalyanaraman, Hema et al. (2018) cGMP-dependent protein kinase-2 regulates bone mass and prevents diabetic bone loss. J Endocrinol 238:203-219
Serrano, Ramon L; Chen, Liang-Yu; Lotz, Martin K et al. (2018) Impaired Proteasomal Function in Human Osteoarthritic Chondrocytes Can Contribute to Decreased Levels of SOX9 and Aggrecan. Arthritis Rheumatol 70:1030-1041
Jin, Yunyun; Cong, Qian; Gvozdenovic-Jeremic, Jelena et al. (2018) Enpp1 inhibits ectopic joint calcification and maintains articular chondrocytes by repressing hedgehog signaling. Development 145:
Grogan, Shawn P; Duffy, Stuart F; Pauli, Chantal et al. (2018) Gene expression profiles of the meniscus avascular phenotype: A guide for meniscus tissue engineering. J Orthop Res 36:1947-1958
Baek, Jihye; Sovani, Sujata; Choi, Wonchul et al. (2018) Meniscal Tissue Engineering Using Aligned Collagen Fibrous Scaffolds: Comparison of Different Human Cell Sources. Tissue Eng Part A 24:81-93

Showing the most recent 10 out of 321 publications