The objectives of this Project are two-fold. First, in parallel with Project by Griffin, we will continue to study the effect of survival time and of gene polymorphisms on the manifestation of specific pathological features in traumatic brain injury which mimic the pathology of Alzheimer's disease (AD) in the belief that this will offer valuable insights into the early molecular mechanisms underlying the development of Alzheimer-type pathology. We hypothesis that the genotype of an individual modulates the extent of Abeta deposition and expression of glia-derived cytokines. Seen in the brain post-injury. Having already established that the apolipoprotein E (ApoE) genotype is important in modulating post-traumatic pathology, we will study the molecular basis of this effect in a novel in vivo paradigm of Abeta-induced neurotoxicity. Tissue from a large cohort of head-injury patients with different post-injury survival times and from non-injured control patients will be genotyped with respect to the polymorphisms in genes in the interleukin-1 gene cluster on chromosome 2.
Aim 1 will determine quantitatively the changes in expression of the glia-derived inflammatory cytokines IL-1, IL-6, and S100beta throughout the brain after fatal head injury.
Aim 2 will assess whether alterations in cytokine immunoreactivity following head injury are spatially and temporally correlated with changes in proteins that are important in the pathogenesis of AD.
Aim 3 will determine whether inter-individual variation in the extent of the inflammatory reaction to head injury is associated withy specific polymorphisms in the genes encoding ApoE and IL-1.
Aim 4 will investigate the mechanisms by which ApoE4 increases susceptibility to AD using an in vivo model of Abeta-induced neurotoxicity. Results should allow us to determine if genotype affects post-trauma pathology and will provide information on how ApoE4 produces its effects at the molecular level. The effect of genetic makeup on the extent of the inflammatory activity in the brain will be an important factor in predicting long-term sequelae of head injury (i.e., AD) and in targeting any potential therapies for the disease.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
2P01AG012411-07
Application #
6434699
Study Section
Special Emphasis Panel (ZAG1)
Project Start
1995-06-01
Project End
2007-05-31
Budget Start
Budget End
Support Year
7
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Imperial College, School of Medicine
Department
Type
DUNS #
City
State
Country
Zip Code
Kiaei, Mahmoud; Balasubramaniam, Meenakshisundaram; Govind Kumar, Vivek et al. (2018) ALS-causing mutations in profilin-1 alter its conformational dynamics: A computational approach to explain propensity for aggregation. Sci Rep 8:13102
Zafar, Maroof K; Maddukuri, Leena; Ketkar, Amit et al. (2018) A Small-Molecule Inhibitor of Human DNA Polymerase ? Potentiates the Effects of Cisplatin in Tumor Cells. Biochemistry 57:1262-1273
Janganati, Venumadhav; Ponder, Jessica; Balasubramaniam, Meenakshisundaram et al. (2018) MMB triazole analogs are potent NF-?B inhibitors and anti-cancer agents against both hematological and solid tumor cells. Eur J Med Chem 157:562-581
Ayyadevara, Srinivas; Ganne, Akshatha; Hendrix, Rachel D et al. (2018) Functional assessments through novel proteomics approaches: Application to insulin/IGF signaling in neurodegenerative disease'. J Neurosci Methods :
Balasubramaniam, Meenakshisundaram; Ayyadevara, Srinivas; Shmookler Reis, Robert J (2018) Structural insights into pro-aggregation effects of C. elegans CRAM-1 and its human ortholog SERF2. Sci Rep 8:14891
Liu, A K L; Lim, E J; Ahmed, I et al. (2018) Review: Revisiting the human cholinergic nucleus of the diagonal band of Broca. Neuropathol Appl Neurobiol 44:647-662
Lamture, Gauri; Crooks, Peter A; Borrelli, Michael J (2018) Actinomycin-D and dimethylamino-parthenolide synergism in treating human pancreatic cancer cells. Drug Dev Res 79:287-294
Balasubramaniam, Meenakshisundaram; Reis, Robert J Shmookler; Ayyadevara, Srinivas et al. (2017) Involvement of tRNAs in replication of human mitochondrial DNA and modifying effects of telomerase. Mech Ageing Dev 166:55-63
Barger, Steven W (2016) Gene regulation and genetics in neurochemistry, past to future. J Neurochem 139 Suppl 2:24-57
Mao, Xianrong; Phanavanh, Bounleut; Hamdan, Hamdan et al. (2016) NF?B-inducing kinase inhibits NF?B activity specifically in neurons of the CNS. J Neurochem 137:154-63

Showing the most recent 10 out of 140 publications