The majority of early-onset familial Alzheimer?s disease (AD) mutations are found in presenilin 1, PSEN1, the active component of ?-secretase. Most mutations increase levels of longer forms of ?-amyloid (A?) leading to enhanced deposition of ?-amyloid plaque and AD pathology. We will investigate a novel series of ?- secretase modulators (GSM) for their ability to pharmacologically reverse the pathological effects of these mutations. GSMs specifically modulate the cleavage activity of ?-secretase on APP processing to preferentially lower A?42 while increasing A?38 and A?37 levels, with minimal effects on A?40. Meanwhile, GSMs do not inhibit cleavage of other ?-secretase substrates, e.g. Notch. Particularly, we will study the effects of soluble GSM (SGSM), developed in our laboratory in collaboration with Dr. Steven Wagner (UCSD), on AD-related pathological events. We first reported the aryl 2-aminothiazole class of parent GSMs (AGSMs) (Kounnas et al., 2010). However, the AGSMs displayed poor aqueous solubility making them undesirable for clinical development. Subsequently, we developed water-soluble aryl 2-aminothiazole class, or 1st generation SGSMs (Wagner et al., 2014), with improved clinical potential. Recently, we structurally enhanced the aryl 2- aminothiazole SGSMs and developed the novel pyridazine class, of 2nd generation SGSMs, which display higher potency in inhibiting A?42 as compared to early SGSMs. Our original and current lead compounds in the pyridazine class are respectively SGSM-15606 and SGSM-776890, both displaying IC50 values of A?42 < 10 nM in cells. While SGSM-776890 is being prepared for a Phase-1A trial (single dose ascending), we have developed over a hundred analogs that have yet to be further tested as backups for clinical trials. In collaboration with other PPG projects, we will focus on the mechanism of actions of SGSM-15606, SGSM- 776890 and other analogs on AD pathology. Furthermore, we will focus on the roles of PSEN1 on adult hippocampal neurogenesis, a process in which human brain stem cells generate new neurons and glial cells throughout adulthood, which is impaired in AD, thereby contributing to cognitive deterioration in AD. Additionally, our GSMs have been provided to Project 1, which will focus on mechanisms by which PSEN1 mutations generate A? peptides ranging from 37-49 amino acids, Project 2, which will focus on the effects PSEN1 mutations on PSEN conformation and A?-dependent and A?-independent mechanism. Collectively, the results of the proposed studies not only will enhance our understanding of the biology of ?-secretase and the pathogenesis of AD, but also may identify a potential compound that can be a therapeutic for AD.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
2P01AG015379-21A1
Application #
9792120
Study Section
Special Emphasis Panel (ZAG1)
Project Start
1998-09-30
Project End
2024-04-30
Budget Start
2019-07-01
Budget End
2020-06-30
Support Year
21
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Jorfi, Mehdi; D'Avanzo, Carla; Kim, Doo Yeon et al. (2018) Three-Dimensional Models of the Human Brain Development and Diseases. Adv Healthc Mater 7:
Hartmann, Stephanie; Zheng, Fang; Kyncl, Michele C et al. (2018) ?-Secretase BACE1 Promotes Surface Expression and Function of Kv3.4 at Hippocampal Mossy Fiber Synapses. J Neurosci 38:3480-3494
Norambuena, Andrés; Wallrabe, Horst; Cao, Rui et al. (2018) A novel lysosome-to-mitochondria signaling pathway disrupted by amyloid-? oligomers. EMBO J 37:
Funane, Tsukasa; Hou, Steven S; Zoltowska, Katarzyna Marta et al. (2018) Selective plane illumination microscopy (SPIM) with time-domain fluorescence lifetime imaging microscopy (FLIM) for volumetric measurement of cleared mouse brain samples. Rev Sci Instrum 89:053705
Zoltowska, Katarzyna Marta; Maesako, Masato; Meier, Joshua et al. (2018) Novel interaction between Alzheimer's disease-related protein presenilin 1 and glutamate transporter 1. Sci Rep 8:8718
Park, Joseph; Wetzel, Isaac; Marriott, Ian et al. (2018) A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer's disease. Nat Neurosci 21:941-951
Chatila, Zena K; Kim, Eunhee; Berlé, Clara et al. (2018) BACE1 Regulates Proliferation and Neuronal Differentiation of Newborn Cells in the Adult Hippocampus in Mice. eNeuro 5:
Zoltowska, Katarzyna Marta; Berezovska, Oksana (2018) Dynamic Nature of presenilin1/?-Secretase: Implication for Alzheimer's Disease Pathogenesis. Mol Neurobiol 55:2275-2284
Jorfi, Mehdi; D'Avanzo, Carla; Tanzi, Rudolph E et al. (2018) Human Neurospheroid Arrays for In Vitro Studies of Alzheimer's Disease. Sci Rep 8:2450
Kara, Eleanna; Marks, Jordan D; Fan, Zhanyun et al. (2017) Isoform- and cell type-specific structure of apolipoprotein E lipoparticles as revealed by a novel Forster resonance energy transfer assay. J Biol Chem 292:14720-14729

Showing the most recent 10 out of 147 publications