This program project application is designed to explore mechanisms of genetic diseases that affect striated muscle, how these diseases are affected by the normal aging process, and it also seeks to develop gene therapy approaches for treating these diseases. The applicants are a diverse and broad based group of researchers with interests in ageing, muscle structure-function relationships, genetic muscle diseases, and gene therapy. The affiliated projects focus on cardiac and skeletal muscle disease and bring together the fields of gerontology, physiology, molecular biology, and genetics. Project 1 seeks to develop a new class of adenoviral vectors that lacks all viral genes and that can transfer large genes into striated muscle of young and old animals. Project 2 aims to develop a better understanding of the role of the dystrophin associated protein complex in striated muscle, how mutations in genes that encode the proteins of this complex lead to muscular dystrophies (CDs), and how normal ageing contributes to the pathology of the MDs. Project 3 explores hypertrophic cardiomyopathies, and aims to develop adenoviral vector mediated gene transfer to the heart as a mechanism to correct inherited cardiac diseases at different stages of disease progression. These projects will be supported by four Core Laboratories. Core 1 is an administrative core to coordinate the separate projects. Core 2 is a Viral Vector Core to provide large scale growth of adenoviral vectors and assistance with their use. Core 3 is an Animal Models/Immunology Core that will house the animals for these studies, provide veterinary care and assistance with protocols, and which will also provide detailed immunological assays to study immune responses to adenoviral vector transfer. Core 45 us a Contractility Core that will measure changes in muscle contractile properties during ageing of normal and diseased muscle and following adenoviral based gene transfer to striated muscles. These projects will lead to a greater understanding of muscle diseases and ageing, and will contribute to the development of therapies for inherited diseases of skeletal and cardiac muscle.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG015434-02
Application #
2909692
Study Section
Special Emphasis Panel (ZAG1-PKN-2 (J1))
Program Officer
Lymn, Richard W
Project Start
1998-05-01
Project End
2003-04-30
Budget Start
1999-05-01
Budget End
2000-04-30
Support Year
2
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Genetics
Type
Schools of Medicine
DUNS #
791277940
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Prins, Kurt W; Asp, Michelle L; Zhang, Huiliang et al. (2016) Microtubule-Mediated Misregulation of Junctophilin-2 Underlies T-Tubule Disruptions and Calcium Mishandling in mdx Mice. JACC Basic Transl Sci 1:122-130
Muir, Lindsey A; Nguyen, Quynh G; Hauschka, Stephen D et al. (2014) Engraftment potential of dermal fibroblasts following in vivo myogenic conversion in immunocompetent dystrophic skeletal muscle. Mol Ther Methods Clin Dev 1:14025
Nishimura, Mayuko; Kumsta, Caroline; Kaushik, Gaurav et al. (2014) A dual role for integrin-linked kinase and ?1-integrin in modulating cardiac aging. Aging Cell 13:431-40
Ramaswamy, Krishnan S; Palmer, Mark L; van der Meulen, Jack H et al. (2011) Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats. J Physiol 589:1195-208
Claflin, Dennis R; Larkin, Lisa M; Cederna, Paul S et al. (2011) Effects of high- and low-velocity resistance training on the contractile properties of skeletal muscle fibers from young and older humans. J Appl Physiol 111:1021-30
Palmer, Mark L; Claflin, Dennis R; Faulkner, John A et al. (2011) Non-uniform distribution of strain during stretch of relaxed skeletal muscle fibers from rat soleus muscle. J Muscle Res Cell Motil 32:39-48
Gumerson, Jessica D; Kabaeva, Zhyldyz T; Davis, Carol S et al. (2010) Soleus muscle in glycosylation-deficient muscular dystrophy is protected from contraction-induced injury. Am J Physiol Cell Physiol 299:C1430-40
Kimura, En; Li, Sheng; Gregorevic, Paul et al. (2010) Dystrophin delivery to muscles of mdx mice using lentiviral vectors leads to myogenic progenitor targeting and stable gene expression. Mol Ther 18:206-13
Fink, Martin; Callol-Massot, Carles; Chu, Angela et al. (2009) A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts. Biotechniques 46:101-13
Wessells, Robert; Fitzgerald, Erin; Piazza, Nicole et al. (2009) d4eBP acts downstream of both dTOR and dFoxo to modulate cardiac functional aging in Drosophila. Aging Cell 8:542-52

Showing the most recent 10 out of 48 publications