Cardiac dysfunction is the most common cause of death in elderly people. Thus far, cardiovascular aging has been considered a continuous and irreversible process. Although mammalian models for age-related cardiac dysfunctions do exist, it is recognized that it will be necessary to discover new gene functions and elucidate their relationships to known cardiac diseases and disease genes, in order to achieve a better understanding of the cardiac aging. Such an understanding is prerequisite for developing more effective treatments. We propose to use the Drosophila fly model, to study age-related cardiac function and dysfunction, and to identify new genes that affect cardiac performance when altered in old animals.
The Specific Aims are: (1) to establish the fly heart as a model for age-related changes of cardiac performance, (2) to carry out genetic manipulation to study age-related cardiac performance (Myosin heavy chain (Mhc) isoforms, Parvalbumin and large-scale screens to identify new genes), and (3) to examine age-related cardiac and muscle function of dystrophin complex genes in the fly model.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG015434-10
Application #
7404521
Study Section
Special Emphasis Panel (ZAG1)
Project Start
2007-05-01
Project End
2008-04-30
Budget Start
2007-05-01
Budget End
2008-04-30
Support Year
10
Fiscal Year
2007
Total Cost
$391,087
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Prins, Kurt W; Asp, Michelle L; Zhang, Huiliang et al. (2016) Microtubule-Mediated Misregulation of Junctophilin-2 Underlies T-Tubule Disruptions and Calcium Mishandling in mdx Mice. JACC Basic Transl Sci 1:122-130
Muir, Lindsey A; Nguyen, Quynh G; Hauschka, Stephen D et al. (2014) Engraftment potential of dermal fibroblasts following in vivo myogenic conversion in immunocompetent dystrophic skeletal muscle. Mol Ther Methods Clin Dev 1:14025
Nishimura, Mayuko; Kumsta, Caroline; Kaushik, Gaurav et al. (2014) A dual role for integrin-linked kinase and ?1-integrin in modulating cardiac aging. Aging Cell 13:431-40
Ramaswamy, Krishnan S; Palmer, Mark L; van der Meulen, Jack H et al. (2011) Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats. J Physiol 589:1195-208
Claflin, Dennis R; Larkin, Lisa M; Cederna, Paul S et al. (2011) Effects of high- and low-velocity resistance training on the contractile properties of skeletal muscle fibers from young and older humans. J Appl Physiol 111:1021-30
Palmer, Mark L; Claflin, Dennis R; Faulkner, John A et al. (2011) Non-uniform distribution of strain during stretch of relaxed skeletal muscle fibers from rat soleus muscle. J Muscle Res Cell Motil 32:39-48
Gumerson, Jessica D; Kabaeva, Zhyldyz T; Davis, Carol S et al. (2010) Soleus muscle in glycosylation-deficient muscular dystrophy is protected from contraction-induced injury. Am J Physiol Cell Physiol 299:C1430-40
Kimura, En; Li, Sheng; Gregorevic, Paul et al. (2010) Dystrophin delivery to muscles of mdx mice using lentiviral vectors leads to myogenic progenitor targeting and stable gene expression. Mol Ther 18:206-13
Fink, Martin; Callol-Massot, Carles; Chu, Angela et al. (2009) A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts. Biotechniques 46:101-13
Wessells, Robert; Fitzgerald, Erin; Piazza, Nicole et al. (2009) d4eBP acts downstream of both dTOR and dFoxo to modulate cardiac functional aging in Drosophila. Aging Cell 8:542-52

Showing the most recent 10 out of 48 publications