The 'metabolic syndrome of aging' in this Program refers to a constellation of metabolic defects including insulin resistance, abdominal obesity, dyslipidemia, hypertension and increased circulating levels of pro-thrombotic and pro-inflammatory peptides. This syndrome is an important risk factor for cardiovascular disease and other age-related diseases, with significant impact on all-cause mortality. We hypothesize that aging is characterized by a decline in hypothalamic function leading to a relative or absolute increase in energy intake, increased fat mass and impaired regulation of fat distribution. We propose that the resulting increases in nutrient availability, total adiposity and abdominal fat distribution contribute both independently and cooperatively to the metabolic syndrome of aging. The hexosamine biosynthetic pathway (HBP) may provide a unifying role as a 'nutrient-sensing' pathway, since its activation by nutrient excess results in functional alterations of key intracellular proteins by glycosylation. Activation of the HBP in fat and endothelial cells induces the expression of pro-thrombotic and pro-inflammatory peptides, which may contribute to insulin resistance and endothelial dysfunction. Increased fat mass, and selective increases in the metabolically dangerous abdominal fat, would therefore potentiate the above process. The overall long-term goals of this Program Project are: 1. To demonstrate that excess nutrients can initiate the key components of the metabolic syndrome of aging. 2. To implicate specific nutrient-sensing pathways in the pathophysiology of this syndrome. 3. To develop new therapeutic approaches for the protection from age-related diseases. These goals will be pursued by a team of investigators at the Albert Einstein College of Medicine. These investigators have an extensive history of collaboration, and their laboratories and offices are contiguous. This program spans the full spectrum from cell biology to in vivo animal physiology to 'translational' studies in humans. Finally, 3 cores will provide all projects with administrative assistance and standardized common measurements (Gene Expression and Protein Chemistry/Animal Physiology Cores) linking the activation of nutrient-sensing pathways with gene expression and plasma levels of key peptides.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG021654-03
Application #
6921875
Study Section
Special Emphasis Panel (ZAG1-ZIJ-2 (O4))
Program Officer
Finkelstein, David B
Project Start
2003-07-15
Project End
2008-06-30
Budget Start
2005-08-01
Budget End
2006-06-30
Support Year
3
Fiscal Year
2005
Total Cost
$2,132,957
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Sathyan, Sanish; Barzilai, Nir; Atzmon, Gil et al. (2018) Genetic Insights Into Frailty: Association of 9p21-23 Locus With Frailty. Front Med (Lausanne) 5:105
Mao, Kai; Quipildor, Gabriela Farias; Tabrizian, Tahmineh et al. (2018) Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice. Nat Commun 9:2394
Hui, Ken Y; Fernandez-Hernandez, Heriberto; Hu, Jianzhong et al. (2018) Functional variants in the LRRK2 gene confer shared effects on risk for Crohn's disease and Parkinson's disease. Sci Transl Med 10:
Gubbi, Sriram; Quipildor, Gabriela Farias; Barzilai, Nir et al. (2018) 40 YEARS of IGF1: IGF1: the Jekyll and Hyde of the aging brain. J Mol Endocrinol 61:T171-T185
Ben-Avraham, Danny; Govindaraju, Diddahally R; Budagov, Temuri et al. (2017) The GH receptor exon 3 deletion is a marker of male-specific exceptional longevity associated with increased GH sensitivity and taller stature. Sci Adv 3:e1602025
Sathyan, Sanish; Barzilai, Nir; Atzmon, Gil et al. (2017) Association of anti-inflammatory cytokine IL10 polymorphisms with motoric cognitive risk syndrome in an Ashkenazi Jewish population. Neurobiol Aging 58:238.e1-238.e8
Milman, Sofiya; Huffman, Derek M; Barzilai, Nir (2016) The Somatotropic Axis in Human Aging: Framework for the Current State of Knowledge and Future Research. Cell Metab 23:980-989
Barzilai, Nir; Crandall, Jill P; Kritchevsky, Stephen B et al. (2016) Metformin as a Tool to Target Aging. Cell Metab 23:1060-1065
Huffman, Derek M; Farias Quipildor, Gabriela; Mao, Kai et al. (2016) Central insulin-like growth factor-1 (IGF-1) restores whole-body insulin action in a model of age-related insulin resistance and IGF-1 decline. Aging Cell 15:181-6
Ismail, Khadija; Nussbaum, Lisa; Sebastiani, Paola et al. (2016) Compression of Morbidity Is Observed Across Cohorts with Exceptional Longevity. J Am Geriatr Soc 64:1583-91

Showing the most recent 10 out of 69 publications