Alzheimer's disease (AD) is the most common dementing illness of late life, and robs persons of vigorous activity and productivity in their later years. Future drug treatments may be capable of slowing the progression of the disease or even preventing its clinical appearance, and when such treatments become available, the ability to detect the illness in its earliest stages will be needed to take full advantage of them. The overall goal of this project is to test the use of structural magnetic resonance scanning and the tools of computational anatomy to distinguish nondemented subjects at elevated risk for developing dementia of the Alzheimer type (DAT) from age- and gender-matched comparison subjects. The primary strategy for identifying subjects at elevated risk for developing DAT will be having a parent with DAT; allelic status for the apolipoprotein E gene will be a secondary strategy. High resolution magnetic resonance (MR) scans will be collected from all subjects at entry into the study, and for subjects who are recruited during the first two years of the Project, repeat MR scans will be collected after three years.
The specific aims of the project include a comparison of the structural characteristics of the hippocampus, parahippocampal gyrus (including the entorhinal cortex) and cingulate gyrus (anterior and posterior segments) in nondemented subjects with (N = 120) and without (n = 120) a parent with DAT. The total group of subjects will then be resorted according to the number of E4 alleles for apolipoprotein E, and a comparison of subjects with or without one or more E4 alleles will be made. If there are neuroanatomical differences in the groups of subjects with and without one or more E4 alleles, then the impact of the apoE4 allele on the effect of having a parent with DAT will be investigated. In addition, we will determine whether there are correlations between neuroanatomical measures that discriminate between subjects at elevated risk for developing DAT and comparison subjects and other predictive variables assessed by other Projects.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
1P01AG026276-01
Application #
6989343
Study Section
Special Emphasis Panel (ZAG1-ZIJ-5 (M2))
Project Start
2005-07-01
Project End
2010-06-30
Budget Start
2005-07-01
Budget End
2006-06-30
Support Year
1
Fiscal Year
2005
Total Cost
$139,815
Indirect Cost
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Musiek, Erik S; Bhimasani, Meghana; Zangrilli, Margaret A et al. (2018) Circadian Rest-Activity Pattern Changes in Aging and Preclinical Alzheimer Disease. JAMA Neurol 75:582-590
Aschenbrenner, Andrew J; Gordon, Brian A; Benzinger, Tammie L S et al. (2018) Influence of tau PET, amyloid PET, and hippocampal volume on cognition in Alzheimer disease. Neurology 91:e859-e866
Day, Gregory S; Gordon, Brian A; Perrin, Richard J et al. (2018) In vivo [18F]-AV-1451 tau-PET imaging in sporadic Creutzfeldt-Jakob disease. Neurology 90:e896-e906
Lewczuk, Piotr; Riederer, Peter; O'Bryant, Sid E et al. (2018) Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the Consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. World J Biol Psychiatry 19:244-328
Oxtoby, Neil P; Young, Alexandra L; Cash, David M et al. (2018) Data-driven models of dominantly-inherited Alzheimer's disease progression. Brain 141:1529-1544
Allison, Samantha; Babulal, Ganesh M; Stout, Sarah H et al. (2018) Alzheimer Disease Biomarkers and Driving in Clinically Normal Older Adults: Role of Spatial Navigation Abilities. Alzheimer Dis Assoc Disord 32:101-106
La Joie, Renaud; Bejanin, Alexandre; Fagan, Anne M et al. (2018) Associations between [18F]AV1451 tau PET and CSF measures of tau pathology in a clinical sample. Neurology 90:e282-e290
Broce, Iris; Karch, Celeste M; Wen, Natalie et al. (2018) Correction: Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies. PLoS Med 15:e1002504
Liao, Fan; Li, Aimin; Xiong, Monica et al. (2018) Targeting of nonlipidated, aggregated apoE with antibodies inhibits amyloid accumulation. J Clin Invest 128:2144-2155
Yan, Qi; Nho, Kwangsik; Del-Aguila, Jorge L et al. (2018) Genome-wide association study of brain amyloid deposition as measured by Pittsburgh Compound-B (PiB)-PET imaging. Mol Psychiatry :

Showing the most recent 10 out of 352 publications