Alzheimer?s disease and related dementias (AD/ADRD) are neurodegenerative disorders that are clinically characterized by progressive dementia and spatial disorientation caused in part by proteotoxicity and neuronal death. The pathogenic mechanisms causing AD/ADRD have remained elusive, which has led to alternative hypotheses that defects in central and systemic glucose metabolism and type 2 diabetes are potential risk factors for proteostasis failure and cognitive decline. There is currently no evidence to support a cause or effect relationship between AD/ADRD and metabolic dysfunction/insulin resistance. Macroautophagy (MA) is a key homeostatic mechanism that protects against neurogenerative disorders. MA also prevents type 2 diabetes through its effects in both the central nervous system (CNS) and peripheral tissues. The role of MA is well-defined in the mediobasal hypothalamic (MBH) neurons in the CNS in preventing obesity and insulin resistance. Since AD-related proteotoxicity and aging each overwhelms MA function, and because hypothalamic MA maintains glucose and energy metabolism, we hypothesized that an early event in AD- related proteotoxicity is disruption of MA in MBH and peripheral tissues, which results in systemic insulin resistance that in turn, accelerates the progression of AD/ADRD. We recently demonstrated that a novel isocaloric twice-a-day (ITAD) feeding strategy provides system-wide metabolic benefits by stimulating MA. Consequently, we propose that ITAD feeding will restore MA and metabolic function and delay cognitive impairment in AD/ADRD. To that purpose, we will collaborate with other components of this PPG and: (1) determine the impact of AD-related proteotoxicity on MA and regulation of metabolism in peripheral tissues as a function of nutritional stress and aging; (2) determine whether metabolic defects in models of AD-related proteotoxicity originate from compromised hypothalamic MA; and (3) explore whether ITAD feeding activates MA and prevents metabolic and cognitive defects in AD-related proteotoxicity. Integration in the PPG: In this project, we will use three complementary mouse models of AD-related proteotoxicity and AD/ADRD at distinct age groups that will be generated by the Animal Core and tissues will be shared by all projects. Assessments of metabolism and mechanisms of loss of MA in models of AD-related proteotoxicity and in response to dietary stress and age will be determined in collaboration with P1. Image- based assessments of the changes in MA in MBH and peripheral tissues will be done with the Imaging Core. Characterization of inflammatory changes in peripheral tissues in models of proteotoxicity will be performed in collaboration with P2 and P3. Analyses and integration of data will be carried out with the help of the Biostatistics and Data Management Core. Relevance to public health: Experiments proposed in P4 will test a new hypothesis that development of diabetes, as a consequence of MA failure in models of AD-related proteotoxicity and AD/ADRD, is a major contributing factor to the progression of disease. This project may also reveal that a simple, relatively cost- effective, and immediately translatable approach, ITAD feeding, can delay cognitive failure and extend healthspan in AD/ADRD patients by restoring MA and improving proteostasis.

Public Health Relevance

Alzheimer?s disease and related dementias (AD/ADRD) are neurodegenerative disorders characterized by progressive dementia caused in part by proteoxicity and neuronal death. AD/ADRD are the 6th leading cause of mortality in the U.S. and affects approximately 5.4 million individuals in the U.S. This number is projected to increase to 13.8 million by mid-century. Unfortunately, despite significant research, the deliverables have been marginal due to complex multifactorial causes of AD/ADRD. Studies in this application will test new incisive hypotheses that restoring global metabolic function and preventing AD- related proteotoxicity by activating macroautophagy (MA) will delay cognitive decline. Studies will also determine whether dietary interventions that activate MA will delay cognitive decline in models of AD- related proteotoxicity.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
2P01AG031782-13A1
Application #
9937033
Study Section
Special Emphasis Panel (ZAG1)
Project Start
2009-02-15
Project End
2025-03-31
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
13
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
081266487
City
Bronx
State
NY
Country
United States
Zip Code
10461
Walters, Ryan O; Arias, Esperanza; Diaz, Antonio et al. (2018) Sarcosine Is Uniquely Modulated by Aging and Dietary Restriction in Rodents and Humans. Cell Rep 25:663-676.e6
Mocholi, Enric; Dowling, Samuel D; Botbol, Yair et al. (2018) Autophagy Is a Tolerance-Avoidance Mechanism that Modulates TCR-Mediated Signaling and Cell Metabolism to Prevent Induction of T Cell Anergy. Cell Rep 24:1136-1150
Rodriguez-Muela, Natalia; Parkhitko, Andrey; Grass, Tobias et al. (2018) Blocking p62-dependent SMN degradation ameliorates spinal muscular atrophy disease phenotypes. J Clin Invest 128:3008-3023
Tekirdag, Kumsal; Cuervo, Ana Maria (2018) Chaperone-mediated autophagy and endosomal microautophagy: Joint by a chaperone. J Biol Chem 293:5414-5424
Theofilas, Panos; Ehrenberg, Alexander J; Nguy, Austin et al. (2018) Probing the correlation of neuronal loss, neurofibrillary tangles, and cell death markers across the Alzheimer's disease Braak stages: a quantitative study in humans. Neurobiol Aging 61:1-12
Kaushik, Susmita; Cuervo, Ana Maria (2018) The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19:365-381
Amengual, Jaume; Guo, Liang; Strong, Alanna et al. (2018) Autophagy Is Required for Sortilin-Mediated Degradation of Apolipoprotein B100. Circ Res 122:568-582
Bejarano, Eloy; Murray, John W; Wang, Xintao et al. (2018) Defective recruitment of motor proteins to autophagic compartments contributes to autophagic failure in aging. Aging Cell :e12777
Gong, Zhenwei; Tasset, Inmaculada; Diaz, Antonio et al. (2018) Humanin is an endogenous activator of chaperone-mediated autophagy. J Cell Biol 217:635-647
Dowling, Samuel D; Macian, Fernando (2018) Autophagy and T cell metabolism. Cancer Lett 419:20-26

Showing the most recent 10 out of 147 publications