(CORE A) The overall goals of the Administrative Core (Core A) are to provide scientific, programmatic and fiscal leader- ship, facilitate lines of communication between the different researchers involved in the PPG, maintain cohe- rence in the PPG's overall and long-range goals, and ensure that resources resulting from the PPG will benefit the scientific community. Core A will thus provide the mechanisms to manage, evaluate, and evolve the three Research Projects and two Research Cores in the program. In the context of the above, the task of Core A will be the effective coordination of the activities of all the components, such as the selection and design of jointly used models and resources (mouse lines, transposon reporters, sequencing strategies, etc.), the development of new technologies and tools to more effectively promote the research goals, providing statistical services to the members of the PPG, and enabling the scientific community access to the PPG's resources, technologies, and databases. The following activities will also contribute to achieving the overall goals: 1) Core A will ensure that the administrative and financial requirements of the NIH and the participating institutions are met; 2) Core A will organize monthly videoconferences and annual face-to-face retreats; 3) Core A will be responsible for communications between the PPG and the NIH; 4) Core A will facilitate the submission of joint publications and, in collaboration with Core B, the deposition of high-throughput datasets into public databases; 5) Core A will establish the External Advisory Board (EAB) and organize the annual reviews of the PPG.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG051449-02
Application #
9334686
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2017-06-01
Budget End
2018-05-31
Support Year
2
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Brown University
Department
Type
DUNS #
001785542
City
Providence
State
RI
Country
United States
Zip Code
02912
Seluanov, Andrei; Gladyshev, Vadim N; Vijg, Jan et al. (2018) Mechanisms of cancer resistance in long-lived mammals. Nat Rev Cancer 18:433-441
Wood, Jason G; Schwer, Bjoern; Wickremesinghe, Priyan C et al. (2018) Sirt4 is a mitochondrial regulator of metabolism and lifespan in Drosophila melanogaster. Proc Natl Acad Sci U S A 115:1564-1569
Sun, Xiaoji; Wang, Xuya; Tang, Zuojian et al. (2018) Transcription factor profiling reveals molecular choreography and key regulators of human retrotransposon expression. Proc Natl Acad Sci U S A 115:E5526-E5535
Ito, Takahiro; Teo, Yee Voan; Evans, Shane A et al. (2018) Regulation of Cellular Senescence by Polycomb Chromatin Modifiers through Distinct DNA Damage- and Histone Methylation-Dependent Pathways. Cell Rep 22:3480-3492
Tan, Li; Ke, Zhonghe; Tombline, Gregory et al. (2017) Naked Mole Rat Cells Have a Stable Epigenome that Resists iPSC Reprogramming. Stem Cell Reports 9:1721-1734
Tang, Zuojian; Steranka, Jared P; Ma, Sisi et al. (2017) Human transposon insertion profiling: Analysis, visualization and identification of somatic LINE-1 insertions in ovarian cancer. Proc Natl Acad Sci U S A 114:E733-E740
Jones, Brian C; Wood, Jason G; Chang, Chengyi et al. (2016) A somatic piRNA pathway in the Drosophila fat body ensures metabolic homeostasis and normal lifespan. Nat Commun 7:13856
Wood, Jason G; Jones, Brian C; Jiang, Nan et al. (2016) Chromatin-modifying genetic interventions suppress age-associated transposable element activation and extend life span in Drosophila. Proc Natl Acad Sci U S A 113:11277-11282
Van Meter, Michael; Simon, Matthew; Tombline, Gregory et al. (2016) JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks. Cell Rep 16:2641-2650
Gorbunova, Vera; Seluanov, Andrei (2016) DNA double strand break repair, aging and the chromatin connection. Mutat Res 788:2-6