Increased multi-factorial stress resistance is a property widely shared by models of extended longevity across evolutionary boundaries. Growth hormone (GH) and insulin-like growth factor-1 (IGF-1) receptor deficiencies, for example, which extend lifespan in experimental rodents, also increase resistance to acute oxidative stressors such as paraquat. Dietary restriction, in addition to extending longevity in a wide range of experimental organisms, confers protection against numerous clinically relevant acute stressors, including ischemia reperfusion injury to brain, kidney and liver as well as protection against the toxic side- effects of chemotherapy. Using diet-induced protection from ischemic injury as a model system, we recently identified a novel role for endogenous hydrogen sulfide (H2S) produced by the transsulfuration pathway (TSP) in stress resistance and longevity regulation by dietary restriction. H2S is a gas produced by TSP enzymes CBS and CGL, whose primary role is to convert the essential amino acid methionine to cysteine. Exogenously added H2S can confer numerous benefits ranging from resistance to ischemic injury and suspended animation in experimental mammals, to extended longevity in flies and worms. However, endogenous H2S had not been previously linked to the benefits of dietary restriction. Here, we propose to test the hypothesis that increased endogenous H2S production by TSP enzymes underlies stress resistance and longevity benefits shared by long-lived models. In support of this hypothesis, TSP activity and H2S production are increased in a number of dietary restriction regimens across evolutionary boundaries including in yeast, worms and flies, and in multiple organs in mice upon fasting or dietary protein restriction. Our preliminary data indicate that H2S production by TSP enzymes is repressed by GH and mTOR signaling, two other pathways highly involved in regulation of longevity and stress resistance. Finally, pharmacological or genetic inhibition of CGL and H2S production prevented the benefits of short-term protein restriction against hepatic ischemic injury and protection of bone marrow stem cells from ionizing radiation. Together, these data warrant an investigation into the triggers of endogenous H2S production, the mechanisms by which it promotes oxidative stress resistance and stem cell regeneration, and its interaction with other longevity regulators such as the mitochondrial peptide humanin.

Public Health Relevance

We propose to study the molecular mechanisms linking periodic fasting and protein restriction to stress resistance, metabolic fitness, stem cell regeneration and longevity. Specifically, we will test the hypothesis that increased endogenous production of the gas hydrogen sulfide is essential for these benefits. These studies will contribute to the identification of drugs and interventions to treat but also prevent multiple diseases of aging by acting on the aging process and on multi-system regeneration and rejuvenation.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG055369-04
Application #
10107745
Study Section
Special Emphasis Panel (ZAG1)
Project Start
2018-02-15
Project End
2023-01-31
Budget Start
2021-02-01
Budget End
2022-01-31
Support Year
4
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of Southern California
Department
Type
DUNS #
072933393
City
Los Angeles
State
CA
Country
United States
Zip Code
90089
Yen, Kelvin; Wan, Junxiang; Mehta, Hemal H et al. (2018) Humanin Prevents Age-Related Cognitive Decline in Mice and is Associated with Improved Cognitive Age in Humans. Sci Rep 8:14212
Henning, Susanne M; Galet, Colette; Gollapudi, Kiran et al. (2018) Phase II prospective randomized trial of weight loss prior to radical prostatectomy. Prostate Cancer Prostatic Dis 21:212-220
Mao, Kai; Quipildor, Gabriela Farias; Tabrizian, Tahmineh et al. (2018) Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice. Nat Commun 9:2394
Kim, Su-Jeong; Mehta, Hemal H; Wan, Junxiang et al. (2018) Mitochondrial peptides modulate mitochondrial function during cellular senescence. Aging (Albany NY) 10:1239-1256
Xiao, Jialin; Cohen, Pinchas; Stern, Mariana Carla et al. (2018) Mitochondrial biology and prostate cancer ethnic disparity. Carcinogenesis 39:1311-1319
Nencioni, Alessio; Caffa, Irene; Cortellino, Salvatore et al. (2018) Fasting and cancer: molecular mechanisms and clinical application. Nat Rev Cancer 18:707-719
Nashine, Sonali; Cohen, Pinchas; Nesburn, Anthony B et al. (2018) Characterizing the protective effects of SHLP2, a mitochondrial-derived peptide, in macular degeneration. Sci Rep 8:15175
Guidi, Novella; Longo, Valter D (2018) Periodic fasting starves cisplatin-resistant cancers to death. EMBO J 37:
Liang, Pei; Henning, Susanne M; Guan, Johnny et al. (2018) Role of Host GPR120 in Mediating Dietary Omega-3 Fatty Acid Inhibition of Prostate Cancer. J Natl Cancer Inst :
Qin, Qing; Mehta, Hemal; Yen, Kelvin et al. (2018) Chronic treatment with the mitochondrial peptide humanin prevents age-related myocardial fibrosis in mice. Am J Physiol Heart Circ Physiol 315:H1127-H1136