The complement system is a major biological effector of host defense mechanisms and the process of inflammation underlying diverse immunological diseases. This program of closely interrelated yet distinct projects recognizes the importance of cell surface receptors in the interplay between molecular mediators and cellular responses.
It aims at the complete structural elucidation of the receptors of the inflammatory mediators C3a, C5a, formyl peptides and LTB4. It also endeavors to solve the primary structure of the receptors for C3b (CR1) and C3dg (CR2), the former being genetically linked to Factor H and C4bp and the latter being the receptor for Epstein Barr virus and of considerable potential importance in the T lymphocyte dependent activation of B lymphocytes. The strategies to be employed are different for each receptor, but all rely on cDNA cloning and sequencing technology. Considerable effort will be expanded on the analysis of transduction and regulation of receptor-initiated signals and the involvement of the external membrane associated electron transport system in the aggregative functions of neutrophils. The structure-function relationship of the chemotactic peptide C5a, to be produced in E. coli, will be explored by creating mutant peptides through oligonucleotide directed mutagenesis. The cell killing process by the membrane attack complex of complement will be compared with that employed by human cytolytic lymphocytes. Structural homology between C9 and the lymphocyte analog will be sought using cDNA technology. The joint recognition function of Factor H and of C3b in the alternative pathway will be addressed and related to a qualitatively similar function of human monocytes inducible by a cytokine of unknown nature. The complete cDNA coding sequence for Factor H will be obtained and the chromosomal locus for the Factor H gene will be determined. The regulatory membrane protein decay accelerating factor, which is functionally closely related to Factor H and C4bp, will be isolated for structural studies from a human cell line. Another membrane protein with host protective function, homologous restriction factor, will also be isolated and studied.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
2P01AI017354-06
Application #
3091515
Study Section
(SRC)
Project Start
1981-04-01
Project End
1991-03-31
Budget Start
1986-04-01
Budget End
1987-03-31
Support Year
6
Fiscal Year
1986
Total Cost
Indirect Cost
Name
Scripps Research Institute
Department
Type
DUNS #
City
San Diego
State
CA
Country
United States
Zip Code
92037
Chakravarti, B; Chakravarti, D N; Muller-Eberhard, H J (1998) Purification and characterization of a phagocytosis inducing factor: role in cell-substratum adherence. Biochem Biophys Res Commun 243:591-7
Jagels, M A; Ember, J A; Travis, J et al. (1996) Cleavage of the human C5A receptor by proteinases derived from Porphyromonas gingivalis: cleavage of leukocyte C5a receptor. Adv Exp Med Biol 389:155-64
Jagels, M A; Travis, J; Potempa, J et al. (1996) Proteolytic inactivation of the leukocyte C5a receptor by proteinases derived from Porphyromonas gingivalis. Infect Immun 64:1984-91
Ember, J A; Sanderson, S D; Hugli, T E et al. (1994) Induction of interleukin-8 synthesis from monocytes by human C5a anaphylatoxin. Am J Pathol 144:393-403
Chakravarti, B; Chakravarti, D N; Muller-Eberhard, H J (1994) Role of de novo protein synthesis by human mononuclear leukocytes in opsonin-independent phagocytosis. Cell Immunol 154:134-42
Wingrove, J A; DiScipio, R G; Chen, Z et al. (1992) Activation of complement components C3 and C5 by a cysteine proteinase (gingipain-1) from Porphyromonas (Bacteroides) gingivalis. J Biol Chem 267:18902-7
Jagels, M A; Hugli, T E (1992) Neutrophil chemotactic factors promote leukocytosis. A common mechanism for cellular recruitment from bone marrow. J Immunol 148:1119-28
Moffat, G J; Vik, D P; Noack, D et al. (1992) Complete structure of the murine C4b-binding protein gene and regulation of its expression by dexamethasone. J Biol Chem 267:20400-6
Ember, J A; Sanderson, S D; Taylor, S M et al. (1992) Biologic activity of synthetic analogues of C5a anaphylatoxin. J Immunol 148:3165-73
Prossnitz, E R; Quehenberger, O; Cochrane, C G et al. (1991) Transmembrane signalling by the N-formyl peptide receptor in stably transfected fibroblasts. Biochem Biophys Res Commun 179:471-6

Showing the most recent 10 out of 165 publications