Recent evidence has demonstrated the central role played by cytotoxic T lymphocytes (CTL) in containing HIV-1 replication. It is, therefore, becoming increasingly important to have technologies available for evaluating these immune responses in non-human primate AIDS models. Characterization of these cellular responses during experimental infection in animal models will be essential to clarify the immunopathogenesis of HIV-1 infections. It will also be necessary to measure CTL responses when comparing efficacy and potential utility of candidate AIDS vaccine strategies. To this end, we will explore novel technologies for measuring AIDS virus-specific CTL responses in the rhesus monkey and chimpanzee AIDS models and utilize these immunopathogenesis. In studies described in this application, we will: 1. evaluate fluorescent labeling and flow cytometric enumeration of SIVmac-specific CTL in monkeys using soluble, tetrameric peptide/MHC class I complexes 2. characterize AIDS virus-specific CD8+ T cells in monkeys vaccinated by the mucosal route 3. assess HIV-1-specific CTL responses in infected chimpanzees 4. study novel HIV-1 vaccine strategies in monkeys using polio replicons and virus-like particles.

Project Start
1999-05-01
Project End
2000-04-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
11
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Alabama Birmingham
Department
Type
DUNS #
004514360
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Mestecky, Jiri; Wright, Peter F; Lopalco, Lucia et al. (2011) Scarcity or absence of humoral immune responses in the plasma and cervicovaginal lavage fluids of heavily HIV-1-exposed but persistently seronegative women. AIDS Res Hum Retroviruses 27:469-86
Wahl, Sharon M; Redford, Maryann; Christensen, Shawna et al. (2011) Systemic and mucosal differences in HIV burden, immune, and therapeutic responses. J Acquir Immune Defic Syndr 56:401-11
Raska, Milan; Takahashi, Kazuo; Czernekova, Lydie et al. (2010) Glycosylation patterns of HIV-1 gp120 depend on the type of expressing cells and affect antibody recognition. J Biol Chem 285:20860-9
Quan, Fu-Shi; Sailaja, Gangadhara; Skountzou, Ioanna et al. (2007) Immunogenicity of virus-like particles containing modified human immunodeficiency virus envelope proteins. Vaccine 25:3841-50
Reeves, R Keith; Fultz, Patricia N (2007) Disparate effects of acute and chronic infection with SIVmac239 or SHIV-89.6P on macaque plasmacytoid dendritic cells. Virology 365:356-68
Wang, Bao-Zhong; Liu, Weimin; Kang, Sang-Moo et al. (2007) Incorporation of high levels of chimeric human immunodeficiency virus envelope glycoproteins into virus-like particles. J Virol 81:10869-78
Liao, Hua-Xin; Sutherland, Laura L; Xia, Shi-Mao et al. (2006) A group M consensus envelope glycoprotein induces antibodies that neutralize subsets of subtype B and C HIV-1 primary viruses. Virology 353:268-82
Gao, Feng; Korber, Bette T; Weaver, Eric et al. (2004) Centralized immunogens as a vaccine strategy to overcome HIV-1 diversity. Expert Rev Vaccines 3:S161-8
Fultz, Patricia N; Stallworth, Jackie; Porter, Donna et al. (2003) Immunogenicity in pig-tailed macaques of poliovirus replicons expressing HIV-1 and SIV antigens and protection against SHIV-89.6P disease. Virology 315:425-37