The successful initiation of an immune response hinges on the ability of the products of the Ma Histocompatibility Complex to present peptides to T cell receptors. The induction of antibody products requires an antigen that includes both B cell epitopes and epitopes that will result in T cell help, provided CD4+ T cells upon encounter of the appropriate mHC Class II - peptide complex. The formation of peptide loaded Class II molecules requires delivery of Class II molecules to a specialized endocytic compartment, the signals for which are borne by the Class II associated invariant chain (Ii). It is by no means clear whether Ii is sufficient to achieve this targeting: mutant mice harboring a Class II beta chain with a truncated cytoplasmic tail appear to be defective in antigen presentation, though they express seemingly normal class II molecules at the cell surface. These mice will be used to explore trafficking of Class II molecules as dictated by signals other than those carried by Ii, with special reference to the effects of IL-4 and TNFalpha. While much is known about the structure of MHC products and their bound peptides, less clear is the biochemistry of formation of higher order structures comprised of MHC-peptide complexes. T cell receptor (TCR), the coreceptor CD4, and the attendant kinases. In particular, changes in their interrelationships in the course of a productive encounter - such as the possible dimerization of MHC Class II molecules - are likely to be essential in the successful triggering of a T lymphocyte. To study the requirements for such complex formation, properly assembled MHC Class II peptide complexes. TCR-CD3 complexes and coreceptor (CD4) will be produced by simultaneous in vitro translation of the appropriate mRNAs in membrane- supplemented systems. Interactions amongst these proteins will be investigated immunochemically and by chemical crosslinking. Post- translational modifications of complexes thus generated by tyrosine kinases such as p56lck fyn and AZAP70 will likewise be explored in these systems. The stoichiometry of the complexes formed will be examined; even for the TCR-CD3 complex this parameter has not been established unequivocally. The experiments would provide deeper insight into the requirements for stable T cell-target interactions by studying their key components in vitro, in a manner that is functionally relevant, yet not easily achieved using soluble recombinant proteins or intact cells. The information gathered should aid in the design of strategies aimed at improved antigen presentation and hence should prove valuable for vaccine design.

Project Start
1997-06-01
Project End
1998-05-31
Budget Start
1996-10-01
Budget End
1997-09-30
Support Year
3
Fiscal Year
1997
Total Cost
Indirect Cost
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
149617367
City
Boston
State
MA
Country
United States
Zip Code
02215
Neurath, M F; Weigmann, B; Finotto, S et al. (2002) The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn's disease. J Exp Med 195:1129-43
Szabo, S J; Kim, S T; Costa, G L et al. (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655-69
Ashkar, S; Weber, G F; Panoutsakopoulou, V et al. (2000) Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science 287:860-4
Kim, J I; Ho, I C; Grusby, M J et al. (1999) The transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines. Immunity 10:745-51
Kim, J I; Li, T; Ho, I C et al. (1999) Requirement for the c-Maf transcription factor in crystallin gene regulation and lens development. Proc Natl Acad Sci U S A 96:3781-5
Pestano, G A; Zhou, Y; Trimble, L A et al. (1999) Inactivation of misselected CD8 T cells by CD8 gene methylation and cell death. Science 284:1187-91
Vugmeyster, Y; Glas, R; Perarnau, B et al. (1998) Major histocompatibility complex (MHC) class I KbDb -/- deficient mice possess functional CD8+ T cells and natural killer cells. Proc Natl Acad Sci U S A 95:12492-7
Adler, B; Weber, G F; Cantor, H (1998) Activation of T cells by superantigen: cytokine production but not apoptosis depends on MEK-1 activity. Eur J Immunol 28:3749-54
Oukka, M; Ho, I C; de la Brousse, F C et al. (1998) The transcription factor NFAT4 is involved in the generation and survival of T cells. Immunity 9:295-304
Ho, I C; Kim, J H; Rooney, J W et al. (1998) A potential role for the nuclear factor of activated T cells family of transcriptional regulatory proteins in adipogenesis. Proc Natl Acad Sci U S A 95:15537-41

Showing the most recent 10 out of 19 publications