Similar to the other projects in this application for a Mycology Research Unit, Project I will focus on Cryptococcus neoformans and efforts to identify and verify potential targets leads to advances in the diagnosis, treatment or prevention of cryptococcosis. The natural reservoir of C. neoformans is exogenous, and cryptococcosis is acquired by inhalation of the yeast cells or basidiospores. Both environmental and clinical isolates of C. neoformans vary extensively in the expression of many phenotypes including properties known to affect the clinical outcome. Project I will investigate the association of phenotype and genotype in C. neoformans. Isolates will be obtained globally from a variety of sources, and populations associated with pathogenicity will be characterized genetically. The distribution and relatedness of strains will be analyzed at the DNA sequence level. Thus, the populations structure of C. neoformans will be investigated using defined genotypic markers. With analysis of quantitative trait, loci, specific genotypes will be identified that represent clones that have significantly diverged with respect to clinically relevant phenotypes, including susceptibility to antifungal drugs and the expression of virulence factors. Two broad specific aims are proposed: The first will involved an experiment approach to construct a genetic linkage map of C. neoformans. The genetic traits to be mapped will include those relating to signal transduction (Project II), antifungal drug targets (Project III), and temperature-regulated growth (Project IV).
The second aim will investigate genomic evolution and phenotypic variation in natural populations of C. neoformans. Both approaches will serve to correlate genotypes with clinically relevant phenotypes.

Project Start
2000-03-01
Project End
2001-02-28
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
2
Fiscal Year
2000
Total Cost
$151,494
Indirect Cost
Name
Duke University
Department
Type
DUNS #
071723621
City
Durham
State
NC
Country
United States
Zip Code
27705
Chen, Jianghan; Varma, Ashok; Diaz, Mara R et al. (2008) Cryptococcus neoformans strains and infection in apparently immunocompetent patients, China. Emerg Infect Dis 14:755-62
Litvintseva, Anastasia P; Lin, Xiaorong; Templeton, Irka et al. (2007) Many globally isolated AD hybrid strains of Cryptococcus neoformans originated in Africa. PLoS Pathog 3:e114
Litvintseva, Anastasia P; Thakur, Rameshwari; Vilgalys, Rytas et al. (2006) Multilocus sequence typing reveals three genetic subpopulations of Cryptococcus neoformans var. grubii (serotype A), including a unique population in Botswana. Genetics 172:2223-38
Kingsbury, Joanne M; Goldstein, Alan L; McCusker, John H (2006) Role of nitrogen and carbon transport, regulation, and metabolism genes for Saccharomyces cerevisiae survival in vivo. Eukaryot Cell 5:816-24
Xue, Chaoyang; Bahn, Yong-Sun; Cox, Gary M et al. (2006) G protein-coupled receptor Gpr4 senses amino acids and activates the cAMP-PKA pathway in Cryptococcus neoformans. Mol Biol Cell 17:667-79
Bahn, Yong-Sun; Kojima, Kaihei; Cox, Gary M et al. (2005) Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans. Mol Biol Cell 16:2285-300
Fan, Weihua; Kraus, Peter R; Boily, Marie-Josee et al. (2005) Cryptococcus neoformans gene expression during murine macrophage infection. Eukaryot Cell 4:1420-33
Blankenship, Jill R; Heitman, Joseph (2005) Calcineurin is required for Candida albicans to survive calcium stress in serum. Infect Immun 73:5767-74
Hull, Christina M; Boily, Marie-Josee; Heitman, Joseph (2005) Sex-specific homeodomain proteins Sxi1alpha and Sxi2a coordinately regulate sexual development in Cryptococcus neoformans. Eukaryot Cell 4:526-35
Litvintseva, Anastasia P; Kestenbaum, Lori; Vilgalys, Rytas et al. (2005) Comparative analysis of environmental and clinical populations of Cryptococcus neoformans. J Clin Microbiol 43:556-64

Showing the most recent 10 out of 85 publications