A critical aspect of the program project proposal includes the in vivo analysis of dendritic cell function in specifically genetically engineered strains of mice. Two general types of mouse strains will be routinely utilized - those severely immunocompromised, the result of specific gene deletions in immune functions and autoimmune strains of mice that are hyper-responsive to a variety of antigen stimuli. The goals of the program project grant involve the manipulation of these animals to determine the role of innate DC subsets in maintaining tolerance and the pathways that are involved in that vital function. The generation and maintenance of these strains will be the function of the animal services core, headed by Dr. Jeffrey Ravetch. The purpose of this core will be to provide segregated facilities for the housing and breeding of the animal strains proposed in this program project. To support that function, the Director of LARC, Mr. Fred Quimby, has agreed to work with the program project investigators to implement the level of animal husbandry necessary. A full-time animal technician dedicated to this purpose will be required to provide the additional care these animals require, including bi-weekly bedding changes, prophylactic antibiotic treatment and the sterilization of all cages, bedding and food. This cost, along with the per diem established by the LARC for standard animal care, will cover the additional services required.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI051573-08
Application #
7905132
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
8
Fiscal Year
2009
Total Cost
$225,270
Indirect Cost
Name
Rockefeller University
Department
Type
DUNS #
071037113
City
New York
State
NY
Country
United States
Zip Code
10065
Sela, Uri; Park, Chae Gyu; Park, Andrew et al. (2016) Dendritic Cells Induce a Subpopulation of IL-12R?2-Expressing Treg that Specifically Consumes IL-12 to Control Th1 Responses. PLoS One 11:e0146412
Guermonprez, Pierre; Helft, Julie; Claser, Carla et al. (2013) Inflammatory Flt3l is essential to mobilize dendritic cells and for T cell responses during Plasmodium infection. Nat Med 19:730-8
Schreiber, Heidi A; Loschko, Jakob; Karssemeijer, Roos A et al. (2013) Intestinal monocytes and macrophages are required for T cell polarization in response to Citrobacter rodentium. J Exp Med 210:2025-39
Bozzacco, Leonia; Yu, Haiqiang (2013) Identification and quantitation of MHC class II-bound peptides from mouse spleen dendritic cells by immunoprecipitation and mass spectrometry analysis. Methods Mol Biol 1061:231-43
Bozzacco, Leonia; Yu, Haiqiang; Dengjel, Jorn et al. (2012) Strategy for identifying dendritic cell-processed CD4+ T cell epitopes from the HIV gag p24 protein. PLoS One 7:e41897
Meredith, Matthew M; Liu, Kang; Kamphorst, Alice O et al. (2012) Zinc finger transcription factor zDC is a negative regulator required to prevent activation of classical dendritic cells in the steady state. J Exp Med 209:1583-93
Meredith, Matthew M; Liu, Kang; Darrasse-Jeze, Guillaume et al. (2012) Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J Exp Med 209:1153-65
Wang, Bei; Zaidi, Neeha; He, Li-Zhen et al. (2012) Targeting of the non-mutated tumor antigen HER2/neu to mature dendritic cells induces an integrated immune response that protects against breast cancer in mice. Breast Cancer Res 14:R39
Bozzacco, Leonia; Yu, Haiqiang; Zebroski, Henry A et al. (2011) Mass spectrometry analysis and quantitation of peptides presented on the MHC II molecules of mouse spleen dendritic cells. J Proteome Res 10:5016-30
Li, Fubin; Ravetch, Jeffrey V (2011) Inhibitory Fc? receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science 333:1030-4

Showing the most recent 10 out of 40 publications