We, and others, have shown that the negative T cell costimulatory pathways play a critical role in regulating alloimmune responses and tolerance. Our overall hypothesis is that the integration of positive and negative signals delivered by allogeneic hematopoietic and/or parenchymal cells under inflammatory conditions dictates tolerance vs tissue destruction. Our main goal is to define the relationship between these signals at the tissue level and outcome of alloantigen exposure during graft-vs-host disease (GVHD) and organ grafting models. Lessons learned from these distinct but interrelated and complementary models will further our understanding of the mechanisms of GVHD and organ allograft rejection and tolerance. These studies will lead to development of novel therapeutic strategies by harnessing the physiologic mechanisms that regulate immune responses. We propose to address three questions: 1) What is the role of hematopoietic vs parenchyma cell expression of negative costimulatory molecules in alloimmunity and tolerance? 2) What are the important and unique interactions between positive and negative costimulatory pathways that determine the fate of alloimmune response in an inflammatory environment? 3) What are the effects and mechanisms of targeting of these pathways in preclinical models of alloimmune responses? Our specific aims are:
AIM 1 : To investigate the functions of the PD-1:PD-L1,-L2 negative costimulatory pathway in GVHD and solid organ transplants. 1A. Study the role of the PD-1 pathway in GVHD focusing on the parenchymal vs hematopoietic cell expression of PD-1 ligands in regulating alloimmunity. 1B. Study the role of PD-1 pathway interactions with the CD28/B7 positive T cell costimulatory pathway that augments and donor Tregs that suppress GVHD. 1C: To investigate the functions and mechanisms of PD-1:PD-L1 and B7-1/PD-L1 interactions in alloimmune responses in models of solid organ transplantation.
AIM 2 : To investigate the functions of B7-H3 expression on hematopoietic vs parenchymal cells during GVHD (2A). In order to define the exact functions of this novel pathway in alloimmunity we plan to characterize the B7-H3 receptor, TLT2, and clone a putative second and inhibitory B7-H3 receptor (2B). We have a number of unique tools that will enable us to dissect the functions, mechanisms, and interactions of negative and positive costimulatory pathways and the microenvironment that will permit the optimal targeting of costimulatory pathways to inhibit detrimental T cell alloresponses that limit hematopoietic and solid organ allograft acceptance.

Public Health Relevance

The results of our studies should have major implications for the understanding of the physiologic pathways that regulate alloimmune responses and provide the rationale to develop novel therapeutic strategies to prevent and treat GHVD, and induce tolerance in solid organ and cell transplantation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI056299-07
Application #
8126327
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2010-09-01
Budget End
2011-08-31
Support Year
7
Fiscal Year
2010
Total Cost
$520,597
Indirect Cost
Name
Harvard University
Department
Type
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
Du, Jing; Flynn, Ryan; Paz, Katelyn et al. (2018) Murine chronic graft-versus-host disease proteome profiling discovers CCL15 as a novel biomarker in patients. Blood 131:1743-1754
Zeiser, Robert; Sarantopoulos, Stefanie; Blazar, Bruce R (2018) B-cell targeting in chronic graft-versus-host disease. Blood 131:1399-1405
Blazar, Bruce R; MacDonald, Kelli P A; Hill, Geoffrey R (2018) Immune regulatory cell infusion for graft-versus-host disease prevention and therapy. Blood 131:2651-2660
Chihara, Norio; Madi, Asaf; Kondo, Takaaki et al. (2018) Induction and transcriptional regulation of the co-inhibitory gene module in T cells. Nature 558:454-459
Sage, Peter T; Schildberg, Frank A; Sobel, Raymond A et al. (2018) Dendritic Cell PD-L1 Limits Autoimmunity and Follicular T Cell Differentiation and Function. J Immunol 200:2592-2602
Lu, Yunjie; Gao, Ji; Zhang, Shaopeng et al. (2018) miR-142-3p regulates autophagy by targeting ATG16L1 in thymic-derived regulatory T cell (tTreg). Cell Death Dis 9:290
Dixon, Karen O; Schorer, Michelle; Nevin, James et al. (2018) Functional Anti-TIGIT Antibodies Regulate Development of Autoimmunity and Antitumor Immunity. J Immunol 200:3000-3007
Fan, Martin Y; Turka, Laurence A (2018) Immunometabolism and PI(3)K Signaling As a Link between IL-2, Foxp3 Expression, and Suppressor Function in Regulatory T Cells. Front Immunol 9:69
Wu, Chuan; Chen, Zuojia; Xiao, Sheng et al. (2018) SGK1 Governs the Reciprocal Development of Th17 and Regulatory T Cells. Cell Rep 22:653-665
Juchem, Kathryn W; Sacirbegovic, Faruk; Zhang, Cuiling et al. (2018) PD-L1 Prevents the Development of Autoimmune Heart Disease in Graft-versus-Host Disease. J Immunol 200:834-846

Showing the most recent 10 out of 332 publications