The Immunomicroscopy Core will consist of a state-of- the-art fluorescence imaging unit, a laser dissection microscope system, and equipment for preparing specimens including a cryostat and microtome. It will be supervised by the director, who will be responsible for training the senior research assistant and assuring its quality control. The Core will be used to define immune responses to Francisella tulerensis infection with time, as well as aid in the discovery of molecules involved in virulence such as sensitivity to intramacrophage survival and resistance to antimicrobial peptides. Analyses will be done in situ with tissues as well as at the level of single cells. As such, it will play a critical role in successfully completing the long-term goals of this Program Project: Tularemia: Pathogenesis and Host Response

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI057986-04
Application #
7662479
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2008-07-01
Budget End
2009-06-30
Support Year
4
Fiscal Year
2008
Total Cost
$69,993
Indirect Cost
Name
University of Texas Health Science Center San Antonio
Department
Type
DUNS #
800189185
City
San Antonio
State
TX
Country
United States
Zip Code
78249
Nguyen, Jesse Q; Gilley, Ryan P; Zogaj, Xhavit et al. (2014) Lipidation of the FPI protein IglE contributes to Francisella tularensis ssp. novicida intramacrophage replication and virulence. Pathog Dis 72:10-8
Chu, Ping; Cunningham, Aimee L; Yu, Jieh-Juen et al. (2014) Live attenuated Francisella novicida vaccine protects against Francisella tularensis pulmonary challenge in rats and non-human primates. PLoS Pathog 10:e1004439
Tsai, Su-Yu; Segovia, Jesus A; Chang, Te-Hung et al. (2014) DAMP molecule S100A9 acts as a molecular pattern to enhance inflammation during influenza A virus infection: role of DDX21-TRIF-TLR4-MyD88 pathway. PLoS Pathog 10:e1003848
Signarovitz, Aimee L; Ray, Heather J; Yu, Jieh-Juen et al. (2012) Mucosal immunization with live attenuated Francisella novicida U112ýýiglB protects against pulmonary F. tularensis SCHU S4 in the Fischer 344 rat model. PLoS One 7:e47639
Arulanandam, Bernard P; Chetty, Senthilnath Lakshmana; Yu, Jieh-Juen et al. (2012) Francisella DnaK inhibits tissue-nonspecific alkaline phosphatase. J Biol Chem 287:37185-94
Hunter, Colleen; Rodriguez, Annette; Yu, Jieh-Juen et al. (2012) Comparison of bone marrow-derived and mucosal mast cells in controlling intramacrophage Francisella tularensis replication. Exp Biol Med (Maywood) 237:617-21
Segovia, Jesus; Sabbah, Ahmed; Mgbemena, Victoria et al. (2012) TLR2/MyD88/NF-?B pathway, reactive oxygen species, potassium efflux activates NLRP3/ASC inflammasome during respiratory syncytial virus infection. PLoS One 7:e29695
Zogaj, Xhavit; Wyatt, Geoff C; Klose, Karl E (2012) Cyclic di-GMP stimulates biofilm formation and inhibits virulence of Francisella novicida. Infect Immun 80:4239-47
Rodriguez, Annette R; Yu, Jieh-Juen; Guentzel, M Neal et al. (2012) Mast cell TLR2 signaling is crucial for effective killing of Francisella tularensis. J Immunol 188:5604-11
Sanapala, Shilpa; Yu, Jieh-Juen; Murthy, Ashlesh K et al. (2012) Perforin- and granzyme-mediated cytotoxic effector functions are essential for protection against Francisella tularensis following vaccination by the defined F. tularensis subsp. novicida ýýfopC vaccine strain. Infect Immun 80:2177-85

Showing the most recent 10 out of 49 publications