The Administrative Core will coordinate the activities of the Projects and Animal Core. It will be responsible for encouraging the exploration of new research directions and for arranging consultations with the Internal and External Advisory Committees. It will be responsible for preparing scientific progress reports and renewal applications. It will organize the monthly meetings of the Projects at which research progress is presented. It will be responsible for budget allocation and for monitoring expenses. It will allocate travel funds. Two of the projects of the PPG are located offsite, in Chicago and in Madrid, Spain. Thus, important functions of the Administrative Core will be to facilitate discussions between the Projects by arranging videoconferences between the lowa, Loyola and Madrid projects and to coordinate two meetings per year at the University of lowa of all of the Project Directors. In summary, the Administrative Core will have a critical role in making sure that the PPG is efficiently organized and is productive as possible.

Public Health Relevance

This Program Project Grant is concerned with understanding the pathogenesis of SARS and in developing new vaccines that would be useful if SARS were to recur. The Administrative Core will have an important role in guaranteeing success of the project and providing administrative support so that members of the projects can concentrate on their research.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI060699-09
Application #
8686715
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
9
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Iowa
Department
Type
DUNS #
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Fehr, Anthony R; Jankevicius, Gytis; Ahel, Ivan et al. (2018) Viral Macrodomains: Unique Mediators of Viral Replication and Pathogenesis. Trends Microbiol 26:598-610
Alshukairi, Abeer N; Zheng, Jian; Zhao, Jingxian et al. (2018) High Prevalence of MERS-CoV Infection in Camel Workers in Saudi Arabia. MBio 9:
Sodhi, Chhinder P; Wohlford-Lenane, Christine; Yamaguchi, Yukihiro et al. (2018) Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am J Physiol Lung Cell Mol Physiol 314:L17-L31
Castaño-Rodriguez, Carlos; Honrubia, Jose M; Gutiérrez-Álvarez, Javier et al. (2018) Role of Severe Acute Respiratory Syndrome Coronavirus Viroporins E, 3a, and 8a in Replication and Pathogenesis. MBio 9:
Zheng, Jian; Perlman, Stanley (2018) Immune responses in influenza A virus and human coronavirus infections: an ongoing battle between the virus and host. Curr Opin Virol 28:43-52
Chu, Daniel K W; Hui, Kenrie P Y; Perera, Ranawaka A P M et al. (2018) MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity. Proc Natl Acad Sci U S A 115:3144-3149
Galasiti Kankanamalage, Anushka C; Kim, Yunjeong; Damalanka, Vishnu C et al. (2018) Structure-guided design of potent and permeable inhibitors of MERS coronavirus 3CL protease that utilize a piperidine moiety as a novel design element. Eur J Med Chem 150:334-346
Grunewald, Matthew E; Fehr, Anthony R; Athmer, Jeremiah et al. (2018) The coronavirus nucleocapsid protein is ADP-ribosylated. Virology 517:62-68
Canton, Javier; Fehr, Anthony R; Fernandez-Delgado, Raúl et al. (2018) MERS-CoV 4b protein interferes with the NF-?B-dependent innate immune response during infection. PLoS Pathog 14:e1006838
Wang, Yanqun; Sun, Jing; Channappanavar, Rudragouda et al. (2017) Simultaneous Intranasal/Intravascular Antibody Labeling of CD4+ T Cells in Mouse Lungs. Bio Protoc 7:

Showing the most recent 10 out of 111 publications