Tuberculosis remains a major public health burden. With the emergence of multi-drug resistant strains of Mycobacterium tuberculosis and the sustained HIV epidemic worldwide, the threat of tuberculous infection can be expected to continue for quite some time. Clearly, effective ant-ituberculosis intervention is urgently needed. The goal of this Program Project is to design safe and efficacious anti-tuberculous vaccines. For such an endeavor, animal experimentation designed to evaluate vaccine safeness and efficacy is indispensable. The goal of Core B is to provide the investigators participating in this Program Project with the infrastructure to carry out animal studies. Specifically, Core B will i) maintain a safe, efficient, and up-to-date biosafey-level 3 containment animal facility;ii) provide assistance in the design of animal experiemnts, in data interpretation, and in the technical aspects of the various aerogenic models of murine experimental tuberculosis;iii) maintenance and breeding of specific transgenic and gene-disrupted mice. We believe a central core facility for animal studies will fulfill important goals of a Program Project: i) to enhance efficiency, cost-effectiveness, and productivity of the individual participating laboratories, and ii)to foster interaction and collaboration among the investigators.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI063537-05
Application #
7797443
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2009-04-01
Budget End
2010-03-31
Support Year
5
Fiscal Year
2009
Total Cost
$190,742
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Harbut, Michael B; Yang, Baiyuan; Liu, Renhe et al. (2018) Small Molecules Targeting Mycobacterium tuberculosis Type II NADH Dehydrogenase Exhibit Antimycobacterial Activity. Angew Chem Int Ed Engl 57:3478-3482
Kunnath-Velayudhan, Shajo; Goldberg, Michael F; Saini, Neeraj K et al. (2017) Transcriptome Analysis of Mycobacteria-Specific CD4+ T Cells Identified by Activation-Induced Expression of CD154. J Immunol 199:2596-2606
Glass, Lisa N; Swapna, Ganduri; Chavadi, Sivagami Sundaram et al. (2017) Mycobacterium tuberculosis universal stress protein Rv2623 interacts with the putative ATP binding cassette (ABC) transporter Rv1747 to regulate mycobacterial growth. PLoS Pathog 13:e1006515
Johnson, Alison J; Kennedy, Steven C; Lindestam Arlehamn, Cecilia S et al. (2017) Identification of Mycobacterial RplJ/L10 and RpsA/S1 Proteins as Novel Targets for CD4+ T Cells. Infect Immun 85:
Phuah, Jiayao; Wong, Eileen A; Gideon, Hannah P et al. (2016) Effects of B Cell Depletion on Early Mycobacterium tuberculosis Infection in Cynomolgus Macaques. Infect Immun 84:1301-1311
Carreño, Leandro J; Saavedra-Ávila, Noemí A; Porcelli, Steven A (2016) Synthetic glycolipid activators of natural killer T cells as immunotherapeutic agents. Clin Transl Immunology 5:e69
Foreman, Taylor W; Mehra, Smriti; LoBato, Denae N et al. (2016) CD4+ T-cell-independent mechanisms suppress reactivation of latent tuberculosis in a macaque model of HIV coinfection. Proc Natl Acad Sci U S A 113:E5636-44
Vergnolle, Olivia; Xu, Hua; Tufariello, JoAnn M et al. (2016) Post-translational Acetylation of MbtA Modulates Mycobacterial Siderophore Biosynthesis. J Biol Chem 291:22315-22326
Olsen, Aaron; Chen, Yong; Ji, Qingzhou et al. (2016) Targeting Mycobacterium tuberculosis Tumor Necrosis Factor Alpha-Downregulating Genes for the Development of Antituberculous Vaccines. MBio 7:
Prados-Rosales, Rafael; Carreño, Leandro J; Weinrick, Brian et al. (2016) The Type of Growth Medium Affects the Presence of a Mycobacterial Capsule and Is Associated With Differences in Protective Efficacy of BCG Vaccination Against Mycobacterium tuberculosis. J Infect Dis 214:426-37

Showing the most recent 10 out of 64 publications