Morphology-based tissue analyses comprise a critical approach for understanding disease mechanisms in animal models of arthritis. Recognizing that superior histologic preparation of rodent tissues for morphometric analysis requires a high degree of technical skill and experience, we have established a dedicated morphology core to facilitate the arthritis-focused studies in this submission. The functions of this morphology core include: i) harvest, preparation and sectioning of tissue for subsequent analysis; ii) histochemical, immunofluorescence and immunohistochemical staining of experimental tissues; iii) microscopy and imaging equipment for analysis and presentation;and iv) technical consultation and literature to aid in histomorphometric-based experimental design. The capabilities of the arthritis core will contribute to achieving the program objectives including histologic identification and quantification of synovial cellular lineages, quantification of pathologic features in synovial tissue (lining hyperplasia, leukocytic infiltration, bone and cartilage destruction) and quantification of synovial tissue extracellular matrix deposition and composition. All four projects in this submission incorporate histologic analysis of arthritic mouse tissues in their experimental design.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI065858-05
Application #
8128459
Study Section
Allergy & Clinical Immunology-1 (AITC)
Project Start
Project End
Budget Start
2010-09-01
Budget End
2011-08-31
Support Year
5
Fiscal Year
2010
Total Cost
$177,037
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Douaiher, Jeffrey; Succar, Julien; Lancerotto, Luca et al. (2014) Development of mast cells and importance of their tryptase and chymase serine proteases in inflammation and wound healing. Adv Immunol 122:211-52
Beckett, Emma L; Stevens, Richard L; Jarnicki, Andrew G et al. (2013) A new short-term mouse model of chronic obstructive pulmonary disease identifies a role for mast cell tryptase in pathogenesis. J Allergy Clin Immunol 131:752-62
Cloutier, Nathalie; Tan, Sisareuth; Boudreau, Luc H et al. (2013) The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol Med 5:235-49
Magarinos, Natalia J; Bryant, Katherine J; Fosang, Amanda J et al. (2013) Mast cell-restricted, tetramer-forming tryptases induce aggrecanolysis in articular cartilage by activating matrix metalloproteinase-3 and -13 zymogens. J Immunol 191:1404-12
Fujimura, Ken; Sasaki, Atsuo T; Anderson, Paul (2012) Selenite targets eIF4E-binding protein-1 to inhibit translation initiation and induce the assembly of non-canonical stress granules. Nucleic Acids Res 40:8099-110
Oyoshi, Michiko K; He, Rui; Li, Yitang et al. (2012) Leukotriene B4-driven neutrophil recruitment to the skin is essential for allergic skin inflammation. Immunity 37:747-58
Adachi, Roberto; Krilis, Steven A; Nigrovic, Peter A et al. (2012) Ras guanine nucleotide-releasing protein-4 (RasGRP4) involvement in experimental arthritis and colitis. J Biol Chem 287:20047-55
Darce, Jaime; Rudra, Dipayan; Li, Li et al. (2012) An N-terminal mutation of the Foxp3 transcription factor alleviates arthritis but exacerbates diabetes. Immunity 36:731-41
Emara, Mohamed M; Fujimura, Ken; Sciaranghella, Daniele et al. (2012) Hydrogen peroxide induces stress granule formation independent of eIF2ýý phosphorylation. Biochem Biophys Res Commun 423:763-9
Simarro, Maria; Giannattasio, Giorgio; Xing, Wei et al. (2012) The translational repressor T-cell intracellular antigen-1 (TIA-1) is a key modulator of Th2 and Th17 responses driving pulmonary inflammation induced by exposure to house dust mite. Immunol Lett 146:8-14

Showing the most recent 10 out of 43 publications