One of the biggest challenges we face in the development of a prophylactic vaccine against HIV/AIDS is to design an envelope (Env) immunogen that can induce protective neutralizing antibodies effective against the diversity of virus strains that characterize the global pandemic. We propose to evaluate novel candidate envelope (Env) vaccines that can induce potent, durable, and broadly protective neutralizing antibody and T cell responses against HIV. The central hypothesis that we seek to test if successful in the proposed research is the following: A vaccine composition that raises potent and durable neutralizing antibody responses with broad reactivity against a diverse primary HIV-1 isolates will protect against HIV infection. The three major objectives are: 1) Using the tools of modern structural biology and biochemistry, to design, produce, and characterize in vitro novel Env immunogens;2) To identify structures and formulations that can induce potent, broad, and durable neutralizing antibody and T-cell responses in vivo in animal models;and 3) To identify candidate Env vaccines that can induce broad immunity and protection in non-human primate virus challenge models. The program comprises 3 projects and 3 scientific cores plus an Administrative Core that will manage the consortium. The three projects will focus on complementary strategies to design novel HIV Env immunogens for the induction of broadly reactive neutralizing antibodies based on current structural information regarding HIV-1 envelope surface (gp120) and transmembrane (gp41) glycoproteins. The scientific cores will be: the Vaccine Technologies Core and the Nonhuman Primate Studies Core and the Peptide Structure and Dynamics Core. Novel delivery scaffolds, adjuvants, and viral vector delivery systems, will be employed to deliver peptide-based and protein antigens. Antigenic structures will be characterized using atomic force microscopy (AFM) to determine their overall size and structure, and cryogenic electron microscopy (EM) will be used to achieve 3D reconstructions with angstrom level resolution. These analyses should provide molecular level understanding of the structures and interactions that lead to enhanced immune responses. Overall, this program should provide for the performance of well-controlled comparative in vitro and in vivo evaluations of the proposed vaccines. Env immunogens will be systematically screened in small animals and non-human primate vaccine/challenge studies using well-defined immunologic and virologic endpoints. These efforts are expected to lead to the identification of improved candidate vaccines for future clinical evaluations.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI066287-04
Application #
7682904
Study Section
Special Emphasis Panel (ZAI1-RB-A (M1))
Program Officer
Mehra, Vijay L
Project Start
2006-09-20
Project End
2011-08-31
Budget Start
2009-09-01
Budget End
2010-08-31
Support Year
4
Fiscal Year
2009
Total Cost
$4,260,986
Indirect Cost
Name
Novartis Vaccines and Diagnostics, Inc.
Department
Type
DUNS #
046866463
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Shen, Xiaoying; Bogers, Willy M; Yates, Nicole L et al. (2017) Cross-Linking of a CD4-Mimetic Miniprotein with HIV-1 Env gp140 Alters Kinetics and Specificities of Antibody Responses against HIV-1 Env in Macaques. J Virol 91:
Bogers, Willy M J M; Barnett, Susan W; Oostermeijer, Herman et al. (2017) Increased, Durable B-Cell and ADCC Responses Associated with T-Helper Cell Responses to HIV-1 Envelope in Macaques Vaccinated with gp140 Occluded at the CD4 Receptor Binding Site. J Virol 91:
Bruun, Tim-Henrik; Grassmann, Veronika; Zimmer, Benjamin et al. (2017) Mammalian cell surface display for monoclonal antibody-based FACS selection of viral envelope proteins. MAbs 9:1052-1064
Liang, Frank; Lindgren, Gustaf; Sandgren, Kerrie J et al. (2017) Vaccine priming is restricted to draining lymph nodes and controlled by adjuvant-mediated antigen uptake. Sci Transl Med 9:
Vassell, Russell; He, Yong; Vennakalanti, Prasad et al. (2015) Immunogens Modeling a Fusion-Intermediate Conformation of gp41 Elicit Antibodies to the Membrane Proximal External Region of the HIV Envelope Glycoprotein. PLoS One 10:e0128562
Bogers, Willy M; Oostermeijer, Herman; Mooij, Petra et al. (2015) Potent immune responses in rhesus macaques induced by nonviral delivery of a self-amplifying RNA vaccine expressing HIV type 1 envelope with a cationic nanoemulsion. J Infect Dis 211:947-55
Tuero, Iskra; Mohanram, Venkatramanan; Musich, Thomas et al. (2015) Mucosal B Cells Are Associated with Delayed SIV Acquisition in Vaccinated Female but Not Male Rhesus Macaques Following SIVmac251 Rectal Challenge. PLoS Pathog 11:e1005101
Brito, Luis A; Chan, Michelle; Shaw, Christine A et al. (2014) A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol Ther 22:2118-29
Kassa, Aemro; Dey, Antu K; Sarkar, Pampi et al. (2013) Stabilizing exposure of conserved epitopes by structure guided insertion of disulfide bond in HIV-1 envelope glycoprotein. PLoS One 8:e76139
Dey, Antu K; Burke, Brian; Sun, Yide et al. (2012) Elicitation of neutralizing antibodies directed against CD4-induced epitope(s) using a CD4 mimetic cross-linked to a HIV-1 envelope glycoprotein. PLoS One 7:e30233

Showing the most recent 10 out of 24 publications