In the last two decades, the field of metabolomics has evolved tremendously due to significant advances in analytical technology and informatics. However, these advances have not efficiently been used to augment our understanding of bacterial physiology or host-pathogen interactions. The proposed Metabolomics Core will address this deficiency by assisting the various projects in this PPG that deal with the physiology of Staphylococcus aureus and its interaction with the host. Specifically, the Metabolomics Core will standardize research methodology involved with the extraction of intracellular and excreted metabolites, establish a firm rationale for the interpretation of affected metabolic pathways based on long-standing biochemical principles, design advanced protocols for the detection of unique cellular metabolites and utilize tracer metabolites (e.g. C13- labelled metabolites) to investigate specific metabolic pathways.
These aims will be achieved following the acquisition of the state-of-the-art Q Exactive Gas Chromatography (GC-MS/MS) mass spectrometer which enables both targeted and untargeted analyses due to its High-Resolution Accurate Mass (HRAM) Orbitrap technology. The GC-platform will not only complement existing Liquid Chromatography-Mass Spectrometry (LC- MS/MS) based methods currently being utilized by the core but will also uniquely be useful for studies aimed at determining carbon flux measurements through metabolic pathways. We anticipate that the Metabolomics Core will be indispensable for the successful outcome of projects associated with this PPG and further, will be a critical resource for the broader staphylococcal research community.
Showing the most recent 10 out of 105 publications