This Harvard-wide Program on Antibiotic Resistance (HPAR) proposal outlines the design and function of a novel, interdisciplinary, collaborative partnership to develop and test new validated lead compounds for changing the paradigms for treatment of multidrug resistant MRSA, VRE and now VRSA infections. Although discovery and delivery of novel and promising new compounds to the development pipeline is a major overall goal, because this is an academic effort, adding to the base of scientific knowledge that underpins the development of inhibitors for these pathogens;the understanding of resistance, and development of novel new tools for studying host-pathogen interactions and multidrug resistant pathogens are also major goals. This project is being proposed by an accomplished group of scientists with extensive experience in the biochemistry of cell wall biosynthesis and use of that information to design screens and new inhibitors;the molecular biology of model host systems and the use of those systems in novel ways for screening compounds that block the ability of bacteria to harm the host;the biology and molecular genetics of biofilm formation in model systems and the use of that information to identify biofilm disrupting agents;the pathogenesis, genetics and antibiotic resistance of enterococci;and the pathogenesis, molecular biology and clinical treatment of infection caused by multidrug resistant staphylococci. This scientific expertise is complemented by administrative experience that includes service as university Vice President for Research, and President and CEO of a research institute. The goal of the HPAR Administrative Core is to create a cohesive and well functioning whole that is greater than the sum of the individual projects.
The Specific Aims of the Administrative Core are to 1) Provide program management and oversight, 2) Facilitate interactions between participants from the various components of Harvard University, 3) Provide critical infrastructure for fiscal management of the program;4) Provide connectivity to and leverage from other Harvard-wide initiatives;and 5) Provide a single point of contact and active coordination for on-going communication with NIAID and the Program Officer, and other NIAID initiatives.

Public Health Relevance

MRSA infections are common, often invasive and life threating. VRE are leading causes of hospital acquired infection. VRE now have donated vancomycin resistance to MRSA, creating VRSA refractor to this last line antibiotic. The administrative core will assure the smooth operation of this PPG, and will insure that the products generated are much greater than the sum of its parts.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI083214-06
Application #
8531140
Study Section
Special Emphasis Panel (ZAI1-LG-M)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
6
Fiscal Year
2013
Total Cost
$198,656
Indirect Cost
$72,091
Name
Massachusetts Eye and Ear Infirmary
Department
Type
DUNS #
073825945
City
Boston
State
MA
Country
United States
Zip Code
02114
Zhang, Sicai; Lebreton, Francois; Mansfield, Michael J et al. (2018) Identification of a Botulinum Neurotoxin-like Toxin in a Commensal Strain of Enterococcus faecium. Cell Host Microbe 23:169-176.e6
Santiago, Marina; Lee, Wonsik; Fayad, Antoine Abou et al. (2018) Genome-wide mutant profiling predicts the mechanism of a Lipid II binding antibiotic. Nat Chem Biol 14:601-608
Dabul, Andrei Nicoli Gebieluca; Avaca-Crusca, Juliana Sposto; Van Tyne, Daria et al. (2018) Resistance in In Vitro Selected Tigecycline-Resistant Methicillin-Resistant Staphylococcus aureus Sequence Type 5 Is Driven by Mutations in mepR and mepA Genes. Microb Drug Resist 24:519-526
Zheng, Zhaojun; Liu, Qingzhong; Kim, Wooseong et al. (2018) Antimicrobial activity of 1,3,4-oxadiazole derivatives against planktonic cells and biofilm of Staphylococcus aureus. Future Med Chem 10:283-296
Kim, Wooseong; Zhu, Wenpeng; Hendricks, Gabriel Lambert et al. (2018) A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature 556:103-107
Vickery, Christopher R; Wood, B McKay; Morris, Heidi G et al. (2018) Reconstitution of Staphylococcus aureus Lipoteichoic Acid Synthase Activity Identifies Congo Red as a Selective Inhibitor. J Am Chem Soc 140:876-879
Jagadeesan, Sakthimala; Hakkim, Abdul (2018) Plate Design for and Cherry Picking of Bacterial RNAi Clones for Systematic Error Detection in High-Throughput Caenorhabditis elegans RNAi Screens. Curr Protoc Mol Biol 124:e70
Johnston, Tatiana; Van Tyne, Daria; Chen, Roy F et al. (2018) Propyl-5-hydroxy-3-methyl-1-phenyl-1H-pyrazole-4-carbodithioate (HMPC): a new bacteriostatic agent against methicillin-resistant Staphylococcus aureus. Sci Rep 8:7062
Bispo, Paulo J M; Davoudi, Samaneh; Sahm, Matthew L et al. (2018) Rapid Detection and Identification of Uveitis Pathogens by Qualitative Multiplex Real-Time PCR. Invest Ophthalmol Vis Sci 59:582-589
Lieberman, Mia T; Van Tyne, Daria; Dzink-Fox, JoAnn et al. (2018) Long-Term Colonization Dynamics of Enterococcus faecalis in Implanted Devices in Research Macaques. Appl Environ Microbiol 84:

Showing the most recent 10 out of 145 publications