Natural regulatory T cells (nTreg) differentiate to acquire FoxpS expression and suppressive function in the thymus. These cells have been thought of as a highly stable lineage, but recent work suggests that they may lose Foxp3 expression and acquire various effector functions, particularly under conditions of lymphopenia and/or inflammation. It will be important to understand the conditions under which this loss may occur, if the expansion and transfer of nTreg, or in vivo augmentation of nTreg activity, will ever be used as immune therapies. We have made the surprising observation that nTreg transferred to Rag-/- mice require exogenous IL-10 from CD11b+ intestinal myeloid cells in order to prevent colitis. The lapsed nTreg in IL-10 deficient recipients acquire a distinct THI-like cytokine secretion pattern, characterized by the secretion of IFNy, but not TNF or IL-17. The experiments in this application therefore will use genetic technologies, cellular immunology methods and in vivo disease models to better understand the molecular changes and cellular interactions that underlie the striking in vivo changes in nTreg that we have observed. We will determine if the loss of nTreg function is reversible (Aim 1), and in Aim 2 we will fully characterize the function of the lapsed cells, and will determine if nTreg acting in other sites also require IL-10 from cells other than lymphocytes. Additionally, in this Aim we will examine the status ofthe Foxp3 locus in lapsed Treg, and the overall pattern of epigenetic modifications in their chromatin. We will determine in Aim 3 if induced Treg (ITreg) display a similar requirement for paracrine IL-10, and if the use of more effective induction methods, such as retinoic acid or alterations induced by viral infection, can fortify iTreg so they can function without exogenous IL-10.
In aim 4, we will compare CD11b+ intestinal myeloid celis from different parts of the mucosal immune system for their ability to stimulate the generation of ITreg and the stabilization of nTreg. In summary, the proposed experiments build on our novel preliminary findings in order to achieve a deep understanding of the pathway leading to the dangerous loss of suppressive function in nTreg, and the means by which this can be reversed or prevented.

Public Health Relevance

Regulatory T cells (Treg) prevent debilitating diseases, such as inflammatory bowel disease (IBD), by putting a brake on the immune response. We have found that in some cases Treg lose this ability, and acquire functions of cells that can cause (IBD). Our experiments are designed to understand the conditions under which this loss of function occurs, and to find ways to reverse it, in order to potentially help patients.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI089624-05
Application #
8860294
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
La Jolla Institute
Department
Type
DUNS #
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Gaddis, Dalia E; Padgett, Lindsey E; Wu, Runpei et al. (2018) Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat Commun 9:1095
Madireddi, Shravan; Eun, So-Young; Mehta, Amit K et al. (2017) Regulatory T Cell-Mediated Suppression of Inflammation Induced by DR3 Signaling Is Dependent on Galectin-9. J Immunol 199:2721-2728
Park, Yoon; Jin, Hyung-Seung; Lopez, Justine et al. (2016) SHARPIN controls regulatory T cells by negatively modulating the T cell antigen receptor complex. Nat Immunol 17:286-96
Lee, Jee H; Elly, Chris; Park, Yoon et al. (2015) E3 Ubiquitin Ligase VHL Regulates Hypoxia-Inducible Factor-1? to Maintain Regulatory T Cell Stability and Suppressive Capacity. Immunity 42:1062-74
Krause, Petra; Morris, Venetia; Greenbaum, Jason A et al. (2015) IL-10-producing intestinal macrophages prevent excessive antibacterial innate immunity by limiting IL-23 synthesis. Nat Commun 6:7055
Eun, So-Young; Lee, Seung-Woo; Xu, Yanfei et al. (2015) 4-1BB ligand signaling to T cells limits T cell activation. J Immunol 194:134-41
Aki, Daisuke; Zhang, Wen; Liu, Yun-Cai (2015) The E3 ligase Itch in immune regulation and beyond. Immunol Rev 266:6-26
Park, Yoon; Jin, Hyung-seung; Aki, Daisuke et al. (2014) The ubiquitin system in immune regulation. Adv Immunol 124:17-66
Jones, Carmen Baca; Pagni, Philippe P; Fousteri, Georgia et al. (2014) Regulatory T cells control diabetes without compromising acute anti-viral defense. Clin Immunol 153:298-307
Madireddi, Shravan; Eun, So-Young; Lee, Seung-Woo et al. (2014) Galectin-9 controls the therapeutic activity of 4-1BB-targeting antibodies. J Exp Med 211:1433-48

Showing the most recent 10 out of 39 publications