Individuals surviving an episode of severe sepsis remain at increased risk for premature death from infection. The cause of this sustained immunosuppressed state has not been adequately explained. Our preliminary data suggest a sustained impairment in monocyte function that is a product of cell-intrinsic changes and, more importantly, altered cellular interactions. In this project, we will explore aspects of the phenotype and function of the post-sepsis splenic monocyte macrophage populations, the spleen cells that help contribute to the sustained reduced response to endotoxin challenge in vivo, as well as the potential contributory role of brain inflammation and the neural connection to the spleen. Overall, this project will identify cellular interactions that control monocyte phenotype function and regulation in vivo in the context of sepsis and will identify new pathways that can be therapeutically targeted even after the acute event to improve long-term outcome in this high-risk group.

Public Health Relevance

Individuals surviving severe sepsis remain at risk for lethal infection. This project will study the splenic monocyte and how its function is altered by the experience of sepsis and how those alterations contribute to immune dysfunction. These studies have the potential to reveal new therapeutic targets to improve long-term outcome in sepsis survivors.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI102852-05
Application #
9535043
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2018-08-01
Budget End
2019-07-31
Support Year
5
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Feinstein Institute for Medical Research
Department
Type
DUNS #
110565913
City
Manhasset
State
NY
Country
United States
Zip Code
11030
Pavlov, Valentin A; Chavan, Sangeeta S; Tracey, Kevin J (2018) Molecular and Functional Neuroscience in Immunity. Annu Rev Immunol 36:783-812
Li, Wei; Bao, Guoqiang; Chen, Weiqiang et al. (2018) Connexin 43 Hemichannel as a Novel Mediator of Sterile and Infectious Inflammatory Diseases. Sci Rep 8:166
Gunasekaran, Manojkumar; Chatterjee, Prodyot K; Shih, Andrew et al. (2018) Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons. Front Immunol 9:638
Zanos, Theodoros P; Silverman, Harold A; Levy, Todd et al. (2018) Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity. Proc Natl Acad Sci U S A 115:E4843-E4852
Chavan, Sangeeta S; Ma, Pingchuan; Chiu, Isaac M (2018) Neuro-immune interactions in inflammation and host defense: Implications for transplantation. Am J Transplant 18:556-563
Rana, Minakshi; Fei-Bloom, Yurong; Son, Myoungsun et al. (2018) Constitutive Vagus Nerve Activation Modulates Immune Suppression in Sepsis Survivors. Front Immunol 9:2032
Kim, Sook Young; Son, Myoungsun; Lee, Sang Eun et al. (2018) High-Mobility Group Box 1-Induced Complement Activation Causes Sterile Inflammation. Front Immunol 9:705
Zaghloul, Nahla; Addorisio, Meghan E; Silverman, Harold A et al. (2017) Forebrain Cholinergic Dysfunction and Systemic and Brain Inflammation in Murine Sepsis Survivors. Front Immunol 8:1673
Hirano, Yohei; Yang, Weng-Lang; Aziz, Monowar et al. (2017) MFG-E8-derived peptide attenuates adhesion and migration of immune cells to endothelial cells. J Leukoc Biol 101:1201-1209
Chavan, Sangeeta S; Pavlov, Valentin A; Tracey, Kevin J (2017) Mechanisms and Therapeutic Relevance of Neuro-immune Communication. Immunity 46:927-942

Showing the most recent 10 out of 26 publications