This program project grant is for basic and clinical studies on the pathogenesis and prevention of osteoporosis. It includes a core facility for administration, clinical services, and data processing and a core histomorphometric laboratory. Five major projects will be undertaken which will include studies on the possible mechanism of action of estrogen in bone and the role of prostaglandins, cytokines, and growth factors, studies on the effect of glucocorticoids on bone cell function, and exploration of the genetic determinants of osteoporosis, and a clinical comparison of exercise and estrogen for the prevention of postmenopausal bone loss. Pilot projects in the first year will examine racial differences in bone mass and morphology, the effects of scoliosis on bone mass, and methods for the immortalization of bone cells. This program project will be integrated with ongoing research efforts in the area of bone metabolism currently carried out with NIH support by a number of the investigators listed above as well as other scientists at the University of Connecticut Health Center.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Program Projects (P01)
Project #
5P01AR038933-05
Application #
3092404
Study Section
Arthritis and Musculoskeletal and Skin Diseases Special Grants Review Committee (AMS)
Project Start
1987-09-30
Project End
1992-08-31
Budget Start
1991-09-01
Budget End
1992-08-31
Support Year
5
Fiscal Year
1991
Total Cost
Indirect Cost
Name
University of Connecticut
Department
Type
Schools of Medicine
DUNS #
City
Farmington
State
CT
Country
United States
Zip Code
06030
Marijanovic, Inga; Kronenberg, Mark S; Erceg Ivkosic, Ivana et al. (2009) Comparison of proliferation and differentiation of calvarial osteoblast cultures derived from Msx2 deficient and wild type mice. Coll Antropol 33:919-24
Zhang, W; Pantschenko, A G; McCarthy, M-B et al. (2007) Bone-targeted overexpression of Bcl-2 increases osteoblast adhesion and differentiation and inhibits mineralization in vitro. Calcif Tissue Int 80:111-22
Jiang, Jin; Lichtler, Alexander C; Gronowicz, Gloria A et al. (2006) Transgenic mice with osteoblast-targeted insulin-like growth factor-I show increased bone remodeling. Bone 39:494-504
Lee, Sun-Kyeong; Gardner, Amy E; Kalinowski, Judith F et al. (2006) RANKL-stimulated osteoclast-like cell formation in vitro is partially dependent on endogenous interleukin-1 production. Bone 38:678-85
He, Jianing; Rosen, Clifford J; Adams, Douglas J et al. (2006) Postnatal growth and bone mass in mice with IGF-I haploinsufficiency. Bone 38:826-35
Lengner, Christopher J; Steinman, Heather A; Gagnon, James et al. (2006) Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling. J Cell Biol 172:909-21
Delahunty, K M; Shultz, K L; Gronowicz, G A et al. (2006) Congenic mice provide in vivo evidence for a genetic locus that modulates serum insulin-like growth factor-I and bone acquisition. Endocrinology 147:3915-23
Sher, L B; Harrison, J R; Adams, D J et al. (2006) Impaired cortical bone acquisition and osteoblast differentiation in mice with osteoblast-targeted disruption of glucocorticoid signaling. Calcif Tissue Int 79:118-25
Pantschenko, Alexander G; Zhang, Wenjian; Nahounou, Marcia et al. (2005) Effect of osteoblast-targeted expression of bcl-2 in bone: differential response in male and female mice. J Bone Miner Res 20:1414-29
Kim, Nacksung; Kadono, Yuho; Takami, Masamichi et al. (2005) Osteoclast differentiation independent of the TRANCE-RANK-TRAF6 axis. J Exp Med 202:589-95

Showing the most recent 10 out of 94 publications