Project Start
1998-07-01
Project End
1999-06-30
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
5
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
073133571
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Lal, Sean; Li, Amy; Allen, David et al. (2015) Best Practice BioBanking of Human Heart Tissue. Biophys Rev 7:399-406
Eldred, Catherine C; Naber, Nariman; Pate, Edward et al. (2013) Conformational changes at the nucleotide site in the presence of bound ADP do not set the velocity of fast Drosophila myosins. J Muscle Res Cell Motil 34:35-42
Harrington, Timothy D; Naber, Nariman; Larson, Adam G et al. (2011) Analysis of the interaction of the Eg5 Loop5 with the nucleotide site. J Theor Biol 289:107-15
Purcell, Thomas J; Naber, Nariman; Franks-Skiba, Kathy et al. (2011) Nucleotide pocket thermodynamics measured by EPR reveal how energy partitioning relates myosin speed to efficiency. J Mol Biol 407:79-91
Waitzman, Joshua S; Larson, Adam G; Cochran, Jared C et al. (2011) The loop 5 element structurally and kinetically coordinates dimers of the human kinesin-5, Eg5. Biophys J 101:2760-9
Purcell, Thomas J; Naber, Nariman; Sutton, Shirley et al. (2011) EPR spectra and molecular dynamics agree that the nucleotide pocket of myosin V is closed and that it opens on binding actin. J Mol Biol 411:16-26
Naber, Nariman; Larson, Adam; Rice, Sarah et al. (2011) Multiple conformations of the nucleotide site of Kinesin family motors in the triphosphate state. J Mol Biol 408:628-42
Carter, Andrew P; Vale, Ronald D (2010) Communication between the AAA+ ring and microtubule-binding domain of dynein. Biochem Cell Biol 88:15-21
Naber, Nariman; Málnási-Csizmadia, András; Purcell, Thomas J et al. (2010) Combining EPR with fluorescence spectroscopy to monitor conformational changes at the myosin nucleotide pocket. J Mol Biol 396:937-48
Larson, Adam G; Naber, Nariman; Cooke, Roger et al. (2010) The conserved L5 loop establishes the pre-powerstroke conformation of the Kinesin-5 motor, eg5. Biophys J 98:2619-27

Showing the most recent 10 out of 81 publications