Extracellular matrix (ECM) mineralization is a physiologic process in bone and teeth and a pathologic one everywhere else in the body. Pathologic ECM mineralization often has deleterious consequences in conditions such as coronary artery disease and osteoarthdtis two diseases for which no curative treatment is available. Despite the biological importance of ECM mineralization the molecular mechanisms restricting it to bone physiologically remain unknown. In particular gene deletion experiments failed to identify osteoblast-specific genes necessary to initiate bone mineralization while they demonstrated the existence of inhibitors of pathologic ECM mineralization. Two of these inhibitors, Npps and Ank, act by producing inorganic pyrophosphate, an inhibitor of ECM mineralization, and exporting it outside the cells. However, the observation that Npps and Ank are expressed in osteoblasts (data not shown), further complicates our understanding of bone mineralization. The absence of osteoblast-specific proteins initiating bone mineralization together with the expression in osteoblasts of mineralization inhibitors like Npps and Ank that affect phosphate metabolism led us to test the following hypothesis: could the spatial restriction of ECM mineralization to bone be explained, at least in part, by coexpression in osteoblasts of genes that are not osteoblast-specific but that affect phosphate metabolism and ECM assembly? The specific aims are: -To induce ectopic ECM mineralization by ectopic expression of tissue non-specific alkaline phosphatase -To raise TNAP levels in blood to determine if this alone can induce ectopic ECM mineralization -To determine whether ECM mineralization in the growth plate is a molecular determinant of longitudinal growth of the skeleton -To use genetic means to identify substrates for TNAP in bone -To address the role of calcium ions in the initiation of ECM mineralization. We believe that this analysis will greatly enhance our understanding of cartilage and bone ECMs mineralization. This may open novel research avenues to understand the mechanisms leading to the closure of the growth plate at the end of puberty. Finally, it could provide new therapeutic avenues to explore diseases characterized by abnormal or ectopic ECM mineralization such as osteoarthdtis (OA).

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Program Projects (P01)
Project #
2P01AR042919-09
Application #
6786527
Study Section
Special Emphasis Panel (ZAR1-TEN-A (J2))
Project Start
2004-04-01
Project End
2005-05-31
Budget Start
2004-04-01
Budget End
2005-05-31
Support Year
9
Fiscal Year
2004
Total Cost
$243,945
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Coustry, Francoise; Oh, Chun-do; Hattori, Takako et al. (2010) The dimerization domain of SOX9 is required for transcription activation of a chondrocyte-specific chromatin DNA template. Nucleic Acids Res 38:6018-28
Nuka, S; Zhou, W; Henry, S P et al. (2010) Phenotypic characterization of epiphycan-deficient and epiphycan/biglycan double-deficient mice. Osteoarthritis Cartilage 18:88-96
Hattori, Takako; Coustry, Francoise; Stephens, Shelley et al. (2008) Transcriptional regulation of chondrogenesis by coactivator Tip60 via chromatin association with Sox9 and Sox5. Nucleic Acids Res 36:3011-24
Lee, Hu-Hui; Behringer, Richard R (2007) Conditional expression of Wnt4 during chondrogenesis leads to dwarfism in mice. PLoS One 2:e450
Govoni, Kristen E; Lee, Seong Keun; Chung, Yoon-Sok et al. (2007) Disruption of insulin-like growth factor-I expression in type IIalphaI collagen-expressing cells reduces bone length and width in mice. Physiol Genomics 30:354-62
Gebhard, Sonja; Hattori, Takako; Bauer, Eva et al. (2007) BAC constructs in transgenic reporter mouse lines control efficient and specific LacZ expression in hypertrophic chondrocytes under the complete Col10a1 promoter. Histochem Cell Biol 127:183-94
Kimura, Hiroaki; Akiyama, Haruhiko; Nakamura, Takashi et al. (2007) Tenascin-W inhibits proliferation and differentiation of preosteoblasts during endochondral bone formation. Biochem Biophys Res Commun 356:935-41
Akiyama, Haruhiko; Stadler, H Scott; Martin, James F et al. (2007) Misexpression of Sox9 in mouse limb bud mesenchyme induces polydactyly and rescues hypodactyly mice. Matrix Biol 26:224-33
Ovchinnikov, Dmitry A; Selever, Jennifer; Wang, Ying et al. (2006) BMP receptor type IA in limb bud mesenchyme regulates distal outgrowth and patterning. Dev Biol 295:103-15
Steiglitz, Barry M; Kreider, Jaclynn M; Frankenburg, Elizabeth P et al. (2006) Procollagen C proteinase enhancer 1 genes are important determinants of the mechanical properties and geometry of bone and the ultrastructure of connective tissues. Mol Cell Biol 26:238-49

Showing the most recent 10 out of 64 publications