While functional correction of genodermatoses has been demonstrated using retroviral mediated ex vivo gene therapy, the cost and traumatic features of this procedure has led to the search for additional non-viral technologies for gene therapy. Non-viral vector gene transfer vectors have been plagued by the inability to get both therapeutic and persistent levels of gene expression in vivo. They have recently described a non-viral vector system based on DNA transposons that integrates an expression cassette into the chromosomal DNA of hepatocytes in vivo. Stable gene transfer is achieved by transient expression from the transposase gene resulting in the integration of transposon DNA flanking an expression cassette. As a result, life-long and therapeutic concentrations of human factor IX have been achieved in hemophilia B mice. Moreover, preliminary studies suggest there is no toxicity and secondary transposition if it occurs is extremely rare. The two major limitations of this system are the limited gene transfer capacity (5.0 kb), and the efficiency of integration, which is 5% of transfected hepatocytes in vivo and varies between different cell types in culture. While the effectiveness of this transposon has been demonstrated for diseases like hemophilia, there are other diseases in which the efficiency and size of the DNA insert will need to be increased. Thus, they plan to use random mutagenesis and DNA shuffling to develop a transposon-based vector that can integrate more efficiently and larger pieces of DNA. They will begin to identify cellular factors involved in transposition. This may give an idea of the rate limiting factors required for transposition and help to explain why there is variation in transposition efficiencies within different cell types. Finally, whey propose to address a safety issue related to determining the true efficacy of secondary transposition events in vitro and in vivo. While the new vectors will first be tested in liver, the biological system where the vector has been most well studied, they plan to collaborate with the other projects herein and pursue the use of the first generation transposon as well as the improved versions for skin-related gene transfer studies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Program Projects (P01)
Project #
2P01AR044012-06A1
Application #
6681003
Study Section
Special Emphasis Panel (ZAR1)
Project Start
2002-09-27
Project End
2007-06-30
Budget Start
Budget End
Support Year
6
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
800771545
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vijayakumar, Soundarapandian; Dang, Suparna; Marinkovich, M Peter et al. (2014) Aberrant expression of laminin-332 promotes cell proliferation and cyst growth in ARPKD. Am J Physiol Renal Physiol 306:F640-54
Gao, Jing; DeRouen, Mindy C; Chen, Chih-Hsin et al. (2008) Laminin-511 is an epithelial message promoting dermal papilla development and function during early hair morphogenesis. Genes Dev 22:2111-24
Tran, Mark; Rousselle, Patricia; Nokelainen, Pasi et al. (2008) Targeting a tumor-specific laminin domain critical for human carcinogenesis. Cancer Res 68:2885-94
Waterman, Elizabeth A; Sakai, Noriyasu; Nguyen, Ngon T et al. (2007) A laminin-collagen complex drives human epidermal carcinogenesis through phosphoinositol-3-kinase activation. Cancer Res 67:4264-70
Pullar, Christine E; Baier, Brian S; Kariya, Yoshinobu et al. (2006) beta4 integrin and epidermal growth factor coordinately regulate electric field-mediated directional migration via Rac1. Mol Biol Cell 17:4925-35
Li, Jie; Zhou, Lisa; Tran, Hoang T et al. (2006) Overexpression of laminin-8 in human dermal microvascular endothelial cells promotes angiogenesis-related functions. J Invest Dermatol 126:432-40
Gonzalez-Quevedo, Rosa; Shoffer, Marina; Horng, Lily et al. (2005) Receptor tyrosine phosphatase-dependent cytoskeletal remodeling by the hedgehog-responsive gene MIM/BEG4. J Cell Biol 168:453-63
Yant, Stephen R; Wu, Xiaolin; Huang, Yong et al. (2005) High-resolution genome-wide mapping of transposon integration in mammals. Mol Cell Biol 25:2085-94
Ortiz-Urda, Susana; Garcia, John; Green, Cheryl L et al. (2005) Type VII collagen is required for Ras-driven human epidermal tumorigenesis. Science 307:1773-6
Arbiser, Jack L; Fan, Chun-Yang; Su, Xiaobo et al. (2004) Involvement of p53 and p16 tumor suppressor genes in recessive dystrophic epidermolysis bullosa-associated squamous cell carcinoma. J Invest Dermatol 123:788-90

Showing the most recent 10 out of 58 publications