Runx2 is a scaffolding protein that interacts with proteins representing many different functional classes, including chromatin remodeling factors, proteins coupled to cell growth control, differentiation of osteoblasts and production of bone matrix, as well as those proteins that transduce developmental signaling pathways for bone formation. We have established that Runx2 recruits to its subnuclear domains associated with the nuclear matrix, intracellular mediators of signaling pathways that are both positive and negative regulators of bone formation, including Smads in response to BMP/TGF(3, and YAP, a WW domain protein in response to Src signaling. We have defined specific point mutations in the Runx2 protein that can disrupt these critical interactions between Runx2 and Smad and Runx2 with WW domain proteins, which include a growing number of factors that influence Runx2 activity on target genes. These point mutations allow us to address the in vivo significance of these interactions in nuclear microenvironments in mouse knock-in models. Our discovery of miRNAs that affect osteoblast differentiation leads us to address how micro-RNAs (miRNA) that target Runx2 and Runx2 co-factors regulate bone formation through modification of the proteins that form Runx2 coregulatory complexes in the nucleus. Project 2 will now pursue how these multiple signaling pathways which converge on Runx2 are regulated during osteoblast differentiation for the control of bone formation. We will 1) characterize Runx2-Smad target genes and regulatory complexes required to complete the BMP2 osteogenic signal;2) characterize the biological mechanisms and signaling pathways influencing the organization of WW coregulatory proteins with Runx2 to control osteogenesis;
and Aim 3) investigate how miRNA candidates that target Runx2 and coregulatory factors regulate osteogenesis. Clinical Relevance: There is a pressing need to develop anabolic therapies for treating bone loss in osteoporosis from the aging skeleton or induced secondary to a metabolic bone disorder. Our studies will define novel targets that produce new bone in response to BMPs, shift the stem cell differentiation towards the osteoblast lineage and identify miRNA regulators of bone formation. Each of these represents potential therapeutic applications to stimulate osteoblast differentiation and bone formation. For example, siRNA and miRNA technologies are being developed for in vivo application. Anabolic therapies that are safer than hormone treatments could be developed for stimulating bone formation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Program Projects (P01)
Project #
5P01AR048818-09
Application #
8114036
Study Section
Special Emphasis Panel (ZAR1)
Project Start
Project End
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
9
Fiscal Year
2010
Total Cost
$404,225
Indirect Cost
Name
University of Massachusetts Medical School Worcester
Department
Type
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
01655
LeBlanc, Kimberly T; Walcott, Marie E; Gaur, Tripti et al. (2015) Runx1 Activities in Superficial Zone Chondrocytes, Osteoarthritic Chondrocyte Clones and Response to Mechanical Loading. J Cell Physiol 230:440-8
Tye, Coralee E; Gordon, Jonathan A R; Martin-Buley, Lori A et al. (2015) Could lncRNAs be the missing links in control of mesenchymal stem cell differentiation? J Cell Physiol 230:526-34
Yang, Seungchan; Quaresma, Alexandre J C; Nickerson, Jeffrey A et al. (2015) Subnuclear domain proteins in cancer cells support the functions of RUNX2 in the DNA damage response. J Cell Sci 128:728-40
Zhang, Xuhui; Akech, Jacqueline; Browne, Gillian et al. (2015) Runx2-Smad signaling impacts the progression of tumor-induced bone disease. Int J Cancer 136:1321-32
Tai, Phillip W L; Zaidi, Sayyed K; Wu, Hai et al. (2014) The dynamic architectural and epigenetic nuclear landscape: developing the genomic almanac of biology and disease. J Cell Physiol 229:711-27
Browne, Gillian; Taipaleenmäki, Hanna; Stein, Gary S et al. (2014) MicroRNAs in the control of metastatic bone disease. Trends Endocrinol Metab 25:320-7
Lopez-Camacho, Cesar; van Wijnen, Andre J; Lian, Jane B et al. (2014) Core binding factor ? (CBF?) is retained in the midbody during cytokinesis. J Cell Physiol 229:1466-74
Zaidi, Sayyed K; Grandy, Rodrigo A; Lopez-Camacho, Cesar et al. (2014) Bookmarking target genes in mitosis: a shared epigenetic trait of phenotypic transcription factors and oncogenes? Cancer Res 74:420-5
Lopez-Camacho, Cesar; van Wijnen, Andre J; Lian, Jane B et al. (2014) CBF? and the leukemogenic fusion protein CBF?-SMMHC associate with mitotic chromosomes to epigenetically regulate ribosomal genes. J Cell Biochem 115:2155-64
Tai, Phillip W L; Wu, Hai; Gordon, Jonathan A R et al. (2014) Epigenetic landscape during osteoblastogenesis defines a differentiation-dependent Runx2 promoter region. Gene 550:1-9

Showing the most recent 10 out of 108 publications