We are interested in the mechanisms that regulate telomere length in normal and cancer cells. Telomeres are the structures at chromosome ends that provide stability to chromosomes and allow the complete replication of the ends. Broken chromosomes that lack telomeres undergo fusions that lead to karyotypic abnormality and chromosome instability; characteristics common in cancer cells. Telomere length is normally maintained as an equilibrium between processes that lengthen and those that shorten telomeres. The ribonucleoprotein DNA polymerase, telomerase, specifically elongates telomeres in vivo. Recent evidence suggests that telomerase may be required for the growth of tumors. Thus, telomerase has been proposed as a new target for cancer chemotherapy. To determine if the absence of telomerase inhibits tumor growth or tumor progression, we are generating a telomerase null mouse in collaboration with Dr. Ronald DePinho. The experiments proposed here will determine whether telomerase is required for tumor induction and for sustained tumor growth. If telomerase is required for sustained tumor growth, tumors lacking telomerase will progress more slowly or perhaps regress, compared to telomerase expressing tumors. Thus or studies in mice will determine whether anti-telomerase drugs may be effective cancer therapeutics. We will look directly for potential recombination mediated telomerase bypass pathways that may lead to telomerase independent tumors. Finally, a telomerase null mouse will help identify potential side effects of telomerase inhibitors, which will need to be addressed in pre-clinical studies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA013106-30
Application #
6410167
Study Section
Project Start
2001-01-01
Project End
2001-12-31
Budget Start
Budget End
Support Year
30
Fiscal Year
2001
Total Cost
$228,401
Indirect Cost
Name
Cold Spring Harbor Laboratory
Department
Type
DUNS #
065968786
City
Cold Spring Harbor
State
NY
Country
United States
Zip Code
11724
Tarumoto, Yusuke; Lu, Bin; Somerville, Tim D D et al. (2018) LKB1, Salt-Inducible Kinases, and MEF2C Are Linked Dependencies in Acute Myeloid Leukemia. Mol Cell 69:1017-1027.e6
Xu, Yali; Milazzo, Joseph P; Somerville, Tim D D et al. (2018) A TFIID-SAGA Perturbation that Targets MYB and Suppresses Acute Myeloid Leukemia. Cancer Cell 33:13-28.e8
Huang, Yu-Han; Klingbeil, Olaf; He, Xue-Yan et al. (2018) POU2F3 is a master regulator of a tuft cell-like variant of small cell lung cancer. Genes Dev 32:915-928
Livshits, Geulah; Alonso-Curbelo, Direna; Morris 4th, John P et al. (2018) Arid1a restrains Kras-dependent changes in acinar cell identity. Elife 7:
Tiriac, Hervé; Belleau, Pascal; Engle, Dannielle D et al. (2018) Organoid Profiling Identifies Common Responders to Chemotherapy in Pancreatic Cancer. Cancer Discov 8:1112-1129
Bhagwat, Anand S; Lu, Bin; Vakoc, Christopher R (2018) Enhancer dysfunction in leukemia. Blood 131:1795-1804
Banito, Ana; Li, Xiang; Laporte, Aimée N et al. (2018) The SS18-SSX Oncoprotein Hijacks KDM2B-PRC1.1 to Drive Synovial Sarcoma. Cancer Cell 34:346-348
Skucha, Anna; Ebner, Jessica; Schmöllerl, Johannes et al. (2018) MLL-fusion-driven leukemia requires SETD2 to safeguard genomic integrity. Nat Commun 9:1983
Banito, Ana; Li, Xiang; Laporte, Aimée N et al. (2018) The SS18-SSX Oncoprotein Hijacks KDM2B-PRC1.1 to Drive Synovial Sarcoma. Cancer Cell 33:527-541.e8
Lin, Kuan-Ting; Ma, Wai Kit; Scharner, Juergen et al. (2018) A human-specific switch of alternatively spliced AFMID isoforms contributes to TP53 mutations and tumor recurrence in hepatocellular carcinoma. Genome Res :

Showing the most recent 10 out of 610 publications