Our program Project is dedicated to studying human breast cancer in vivo. This often means that biological studies are performed directly on clinical specimens. This can be problematic when assessing the structure and expression of genes, in that clinical specimens are nearly always composed of complex mixtures of normal cells and tumor cells. The results of the extremely sensitive molecular techniques we use to analyze DNA and RNA are uninterpretable unless their substrate is prepared from a highly purified sample of one cell type. Thus, target cells must be separated from non-target cells before the samples are prepared, and we do this by manually microdissecting histological tissue sections on glass slides. Several of these molecular techniques (e.g. allelic imbalance, single-strand conformational polymorphism, differential display, and reverse-transcriptase PCR) are being used by three projects in this Program Project (projects 3, 4, and 5). The samples supporting these studies will come from the Evolutionary Tissue Bank in the Tumor Bank and Data Network Core, and the slides will be prepared in the Histology and Immunohistochemistry Core. They will be microdissected in this Core.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA030195-18
Application #
6102080
Study Section
Project Start
1998-08-01
Project End
1999-07-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
18
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of Texas Health Science Center San Antonio
Department
Type
DUNS #
800772162
City
San Antonio
State
TX
Country
United States
Zip Code
78229
Park, Jun Hyoung; Vithayathil, Sajna; Kumar, Santosh et al. (2016) Fatty Acid Oxidation-Driven Src Links Mitochondrial Energy Reprogramming and Oncogenic Properties in Triple-Negative Breast Cancer. Cell Rep 14:2154-2165
Pathiraja, Thushangi N; Nayak, Shweta R; Xi, Yuanxin et al. (2014) Epigenetic reprogramming of HOXC10 in endocrine-resistant breast cancer. Sci Transl Med 6:229ra41
Zhang, Yi; Tseng, Chun-Chih; Tsai, Yuan-Li et al. (2013) Cancer cells resistant to therapy promote cell surface relocalization of GRP78 which complexes with PI3K and enhances PI(3,4,5)P3 production. PLoS One 8:e80071
Machado, Heather L; Kittrell, Frances S; Edwards, David et al. (2013) Separation by cell size enriches for mammary stem cell repopulation activity. Stem Cells Transl Med 2:199-203
Zhang, Xiaomei; Claerhout, Sofie; Prat, Aleix et al. (2013) A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res 73:4885-97
Boone, David N; Lee, Adrian V (2012) Targeting the insulin-like growth factor receptor: developing biomarkers from gene expression profiling. Crit Rev Oncog 17:161-73
Casa, Angelo J; Potter, Adam S; Malik, Simeen et al. (2012) Estrogen and insulin-like growth factor-I (IGF-I) independently down-regulate critical repressors of breast cancer growth. Breast Cancer Res Treat 132:61-73
Creighton, Chad J (2012) Molecular classification and drug response prediction in cancer. Curr Drug Targets 13:1488-94
Pathiraja, Thushangi N; Shetty, Priya B; Jelinek, Jaroslav et al. (2011) Progesterone receptor isoform-specific promoter methylation: association of PRA promoter methylation with worse outcome in breast cancer patients. Clin Cancer Res 17:4177-86
Heckman-Stoddard, B M; Vargo-Gogola, T; Herrick, M P et al. (2011) P190A RhoGAP is required for mammary gland development. Dev Biol 360:1-10

Showing the most recent 10 out of 260 publications