This application focuses on structural alignments at the DNA duplex level associated with abasic sites, exocyclic adducts, 8-oxo-purine lesions and aromatic amine adducts which play a critical role in chemical and radiation induced carcinogenesis. The solution structure of these lesions will be defined by a combination of NMR and molecular dynamics refinements in defined sequence contexts. New directions in our abasic site research will focus on abasic sites containing deletions opposite the lesion and bistrand abasic site lesions which are refractory to repair. These structural studies will be extended to ribonolactone abasic sites both as isolated lesions and as bistrand lesions relevant to neocarcinostatin action. The exocyclic adduct research will be extended to etheno exocyclic deoxycytidine. We shall probe the generality of syn alignments at the exocyclic adduct and the extent of structural perturbations necessary to accommodate the exocyclic ring within the helix. The structural research will be correlated with research on DNA glycosylases which selectively recognize these exocyclic adducts depending on the base opposite the lesion site. We plan a comparative structural investigation of oxidative damage at deoxyguanine and deoxyadenine in the same sequence context in an attempt to understand the origin of the enhanced mutagenicity of 8-oxo-dG in contrast to 8-oxo-dA which is non-mutagenic. An attempt will be also made to characterize imidazole ring-opened FAPY adducts of deoxypurines at the DNA oligomer level. Our previous structural research on base substitution alignments at C8-deoxyguanine aromatic amine adduct sites are being extended to single and double deletion frame-shifts in specific sequence contexts established from in vitro replication studies. Our efforts will attempt to define the conformation of (AA)dG and (AF)dG at the frame-shift site and identify the structural differences associated with single and double deletions. Such a comparative analysis will also be extended to the anti-oxidant carcinogen (ABP)dG and the food toxin (PhIP)dG adducts to evaluate contributions from the aromatic amine ring system to structural alignments at the lesion site. The overall goal is to couple our NMR structural investigations with related calorimetric measurements in Prof. Ken Breslauer's laboratory on these four families of DNA lesions prepared in Prof. Francis Johnson's laboratory. These studies will provide the structural-thermodynamics framework necessary for interpretation of mutagenesis experiments in the laboratories of Profs. Arthur Grollman and John Essigmann.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA047995-08
Application #
2654046
Study Section
Special Emphasis Panel (SRC (N1))
Program Officer
Okano, Paul
Project Start
1990-04-01
Project End
1999-01-31
Budget Start
1998-03-10
Budget End
1999-01-31
Support Year
8
Fiscal Year
1998
Total Cost
Indirect Cost
Name
State University New York Stony Brook
Department
Pharmacology
Type
Schools of Medicine
DUNS #
804878247
City
Stony Brook
State
NY
Country
United States
Zip Code
11794
Minetti, Conceição A S A; Remeta, David P; Iden, Charles R et al. (2015) Impact of thymine glycol damage on DNA duplex energetics: Correlations with lesion-induced biochemical and structural consequences. Biopolymers 103:491-508
Völker, Jens; Plum, G Eric; Gindikin, Vera et al. (2014) Impact of bulge loop size on DNA triplet repeat domains: Implications for DNA repair and expansion. Biopolymers 101:1-12
Li, Mengxia; Völker, Jens; Breslauer, Kenneth J et al. (2014) APE1 incision activity at abasic sites in tandem repeat sequences. J Mol Biol 426:2183-98
Braunlin, William; Völker, Jens; Plum, G Eric et al. (2013) DNA meter: Energy tunable, quantitative hybridization assay. Biopolymers 99:408-17
Völker, Jens; Gindikin, Vera; Klump, Horst H et al. (2012) Energy landscapes of dynamic ensembles of rolling triplet repeat bulge loops: implications for DNA expansion associated with disease states. J Am Chem Soc 134:6033-44
Lukin, Mark; Minetti, Conceicao A S A; Remeta, David P et al. (2011) Novel post-synthetic generation, isomeric resolution, and characterization of Fapy-dG within oligodeoxynucleotides: differential anomeric impacts on DNA duplex properties. Nucleic Acids Res 39:5776-89
Völker, Jens; Plum, G Eric; Klump, Horst H et al. (2010) Energetic coupling between clustered lesions modulated by intervening triplet repeat bulge loops: allosteric implications for DNA repair and triplet repeat expansion. Biopolymers 93:355-69
Zaliznyak, Tanya; Lukin, Mark; El-khateeb, Mahmoud et al. (2010) NMR structure of duplex DNA containing the alpha-OH-PdG.dA base pair: a mutagenic intermediate of acrolein. Biopolymers 93:391-401
Minetti, Conceição A S A; Remeta, David P; Johnson, Francis et al. (2010) Impact of alpha-hydroxy-propanodeoxyguanine adducts on DNA duplex energetics: opposite base modulation and implications for mutagenicity and genotoxicity. Biopolymers 93:370-82
Minetti, Conceicao A S A; Remeta, David P; Dickstein, Rian et al. (2010) Energetic signatures of single base bulges: thermodynamic consequences and biological implications. Nucleic Acids Res 38:97-116

Showing the most recent 10 out of 123 publications