The cell culture facility will function as a repository for the Case Western Reserve University colon cancer cell line bank and all newly derived cells from Project 1. It will provide individual projects with cell lines and ensure that the cell lines, the cell culture methods and cytotoxicity assays used in the Program are uniform. The centralization of this activity is an efficient and economic approach for providing the following specific technical and professional services. 1.Maintain a bank of human colon cancer cell lines and clones derived from these lines. 2.Provide quality control for the cell line bank by monitoring cell lines for alteration in drug sensitivity pattern; changes in growth characteristics and/or karyotype; and to monitor for cell-cell contamination and mycoplasma contamination. 3.Provide cell line models on demand to collaborating projects and assure the uniformity of the cell lines and culture conditions used in each project. 4.Develop specialized cytotoxicity assays for individual lines and assure that the cytotoxicity assays used by individual projects are uniform. 5.Maintain a repository for frozen clinical tissues.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA051183-02
Application #
3795824
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
2
Fiscal Year
1992
Total Cost
Indirect Cost
Name
Case Western Reserve University
Department
Type
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Traicoff, June L; Periyasamy, Sumudra; Brattain, Michael G et al. (2003) Reconstitution of TGF-beta sensitivity in the VACO-411 human colon carcinoma line by somatic cell fusion with MCF-7. J Biomed Sci 10:253-9
Traicoff, J une L; Willson, James K V; Markowitz, Sanford D (2002) Early loss of deleted in colorectal carcinoma gene transcript detected in a group of benign colon adenomas. J Biomed Sci 9:716-20
Whitacre, C M; Zborowska, E; Willson, J K et al. (1999) Detection of poly(ADP-ribose) polymerase cleavage in response to treatment with topoisomerase I inhibitors: a potential surrogate end point to assess treatment effectiveness. Clin Cancer Res 5:665-72
Chatterjee, S; Berger, S J; Berger, N A (1999) Poly(ADP-ribose) polymerase: a guardian of the genome that facilitates DNA repair by protecting against DNA recombination. Mol Cell Biochem 193:23-30
Phillips Jr, W P; Gerson, S L (1999) Acquired resistance to O6-benzylguanine plus chloroethylnitrosoureas in human breast cancer. Cancer Chemother Pharmacol 44:319-26
He, J; Whitacre, C M; Xue, L Y et al. (1998) Protease activation and cleavage of poly(ADP-ribose) polymerase: an integral part of apoptosis in response to photodynamic treatment. Cancer Res 58:940-6
Phillips Jr, W P; Willson, J K; Markowitz, S D et al. (1997) O6-methylguanine-DNA methyltransferase (MGMT) transfectants of a 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU)-sensitive colon cancer cell line selectively repopulate heterogenous MGMT+/MGMT- xenografts after BCNU and O6-benzylguanine plus BCNU. Cancer Res 57:4817-23
Whitacre, C M; Berger, N A (1997) Factors affecting topotecan-induced programmed cell death: adhesion protects cells from apoptosis and impairs cleavage of poly(ADP-ribose)polymerase. Cancer Res 57:2157-63
Chatterjee, S; Hirota, H; Belfi, C A et al. (1997) Hypersensitivity to DNA cross-linking agents associated with up-regulation of glucose-regulated stress protein GRP78. Cancer Res 57:5112-6
Whitacre, C M; Zborowska, E; Gordon, N H et al. (1997) Topotecan increases topoisomerase IIalpha levels and sensitivity to treatment with etoposide in schedule-dependent process. Cancer Res 57:1425-8

Showing the most recent 10 out of 46 publications