Many strategies for gene therapy of solid tumors have involved the use of Moloney murine leukemia (MLV)-based retroviral vectors to deliver cytotoxic or immunogenic genes or anti-oncogenes, but problems have been encountered due to lack of adequate levels of transduction, even when virus packaging cells have been injected directly into tumors. Gene transfer using replication-competent retroviral vectors would be more efficient, as each tumor cell which is successfully transduced would itself become a virus-producing cell and initiate further infection events even after the initial injection. Although replication-competent retroviral (RCR) vectors for delivery of non-viral genes have been described previously, none of these proved to be stable, resulting in rapid rearrangement and deletion of the transgenes, usually within one or two replication cycles. We have devised a novel construct design that has proven stable over at least 8 serial passages in cell culture, and is capable of highly efficient gene delivery to solid tumors in vivo in a nude mouse xenograft model. Until now, the use of such RCR vectors has rarely been contemplated due to their instability and risks associated with uncontrolled spread of virus. However, as we have already established the feasibility of using RCR vectors to achieve highly efficient gene delivery to tumor cells both in cell culture and in vivo, we now propose to target such vectors specifically to prostate tumors by replacing the retroviral promoter in the LTR with the prostate-specific probasin promoter in order to control transcription of the RCR vector genome and hence its replication. We will undertake basic and preclinical studies to characterize the specificity and efficiency of gene delivery, therapeutic efficacy, safety, and immunogenicity of transcriptionally targeted RCR vectors in a logical, step-wise progression starting with cell culture studies, followed subcutaneous tumor models in nude mice, then subcutaneous and orthotopic tumor models in immunocompetent animals, and finally in models of distant site metastasis. The use of replication competent retroviral vectors takes advantage of the amplification process inherent in the wild type virus life cycle and may result in a significant enhancement in transduction efficiency. Targeting the retrovirus specifically and exclusively to tumor cells would limit and control the replicative process and minimize the risk to normal cells, and would represent a significant improvement in vector design.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA059318-08
Application #
6598170
Study Section
Subcommittee E - Prevention &Control (NCI)
Project Start
2002-06-05
Project End
2003-02-28
Budget Start
Budget End
Support Year
8
Fiscal Year
2002
Total Cost
Indirect Cost
Name
University of Southern California
Department
Type
DUNS #
041544081
City
Los Angeles
State
CA
Country
United States
Zip Code
90033
Perez, Omar D; Logg, Christopher R; Hiraoka, Kei et al. (2012) Design and selection of Toca 511 for clinical use: modified retroviral replicating vector with improved stability and gene expression. Mol Ther 20:1689-98
Christodoulopoulos, Ilias; Droniou-Bonzom, Magali E; Oldenburg, Jill E et al. (2010) Vpu-dependent block to incorporation of GaLV Env into lentiviral vectors. Retrovirology 7:4
Epand, Raquel F; Zhang, Yan-Liang; Mirzabekov, Tajib et al. (2008) Membrane activity of an amphiphilic alpha-helical membrane-proximal cytoplasmic domain of the MoMuLV envelope glycoprotein. Exp Mol Pathol 84:9-17
Rozenberg-Adler, Yanina; Conner, John; Aguilar-Carreno, Hector et al. (2008) Membrane-proximal cytoplasmic domain of Moloney murine leukemia virus envelope tail facilitates fusion. Exp Mol Pathol 84:18-30
Logg, Christopher R; Baranick, Brian T; Lemp, Nathan A et al. (2007) Adaptive evolution of a tagged chimeric gammaretrovirus: identification of novel cis-acting elements that modulate splicing. J Mol Biol 369:1214-29
Hiraoka, Kei; Kimura, Takahiro; Logg, Christopher R et al. (2007) Therapeutic efficacy of replication-competent retrovirus vector-mediated suicide gene therapy in a multifocal colorectal cancer metastasis model. Cancer Res 67:5345-53
Weber, Erin L; Cannon, Paula M (2007) Promoter choice for retroviral vectors: transcriptional strength versus trans-activation potential. Hum Gene Ther 18:849-60
Kikuchi, Eiji; Menendez, Silvia; Ozu, Choichiro et al. (2007) Highly efficient gene delivery for bladder cancers by intravesically administered replication-competent retroviral vectors. Clin Cancer Res 13:4511-8
Hsu, Faye Yuan-yi; Zhao, Yi; Anderson, W French et al. (2007) Downregulation of NPM-ALK by siRNA causes anaplastic large cell lymphoma cell growth inhibition and augments the anti cancer effects of chemotherapy in vitro. Cancer Invest 25:240-8
Kikuchi, E; Menendez, S; Ozu, C et al. (2007) Delivery of replication-competent retrovirus expressing Escherichia coli purine nucleoside phosphorylase increases the metabolism of the prodrug, fludarabine phosphate and suppresses the growth of bladder tumor xenografts. Cancer Gene Ther 14:279-86

Showing the most recent 10 out of 70 publications