The overall objective of this program project is to study several major components of high dose conformal therapy in order to optimize our ability to plan and deliver this kind of therapy. Only after the technical and clinical issues involved in conformal therapy are understood and optimized will formal tests of the clinical efficacy be possible. The projects proposed here will optimize our ability to 1) plan and evaluate conformal plans, 2) create sophisticated dose distributions, 3) improve the geometrical precision with which we treat patients, and 4) determine the clinical dose constraints for tumor and normal tissue doses which will be used for these conformal treatments. The University of Michigan has a unique ability to perform this work, based on its six years of experience with clinical 3-D treatment planning and dose escalation using static conformal therapy, the availability of several computer-controlled conformal therapy machines, and four years of work on the methodology to be used for conformal treatment delivery. In Project 1, we will develop several methods for optimization of treatment plans for use with computer-controlled conformal therapy techniques, including interactive, volumetric, and computer-automated optimization techniques, and then perform a clinical treatment planning study to evaluate the usefulness of the techniques in the clinical treatment sites studied in Project 4. In Project 2, we will develop several techniques which should optimize our ability to create desirable dose distributions, through the use of conformal field shaping and beam intensity modulation, and followed by evaluation of the clinical constrains and usefulness of the various techniques. In Project 3, we will study the precision with which patient localization, and target volume verification can be achieved, and will develop methods to minimize the geometric margins which must be used. In Project 4, we use a series of clinical dose escalation trials in prostate, brain, liver, and lung cancer, and a normal tissue dose reduction study in the head and neck area, to attempt to obtain the tumor and normal tissue tolerance dose limits which will allow the optimization of the dose distributions which should be delivered for these various diseases. All four projects are supported by three cores: Core A, which supports administration and statistics for the program project; Core B, which provides clinical physics, treatment planning and dosimetry support; and Core C, which supports computer programming and digital imaging support required by the various projects.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA059827-03
Application #
2100446
Study Section
Special Emphasis Panel (SRC (Q1))
Project Start
1993-04-09
Project End
1998-01-31
Budget Start
1995-02-01
Budget End
1996-01-31
Support Year
3
Fiscal Year
1995
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
791277940
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Ohri, Nitin; Tomé, Wolfgang A; Méndez Romero, Alejandra et al. (2018) Local Control After Stereotactic Body Radiation Therapy for Liver Tumors. Int J Radiat Oncol Biol Phys :
Mendiratta-Lala, Mishal; Gu, Everett; Owen, Dawn et al. (2018) Imaging Findings Within the First 12 Months of Hepatocellular Carcinoma Treated With Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys 102:1063-1069
Wang, Shulian; Campbell, Jeff; Stenmark, Matthew H et al. (2018) A model combining age, equivalent uniform dose and IL-8 may predict radiation esophagitis in patients with non-small cell lung cancer. Radiother Oncol 126:506-510
Sapir, Eli; Tao, Yebin; Schipper, Matthew J et al. (2018) Stereotactic Body Radiation Therapy as an Alternative to Transarterial Chemoembolization for Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys 100:122-130
Hawkins, Peter G; Boonstra, Philip S; Hobson, Stephen T et al. (2018) Prediction of Radiation Esophagitis in Non-Small Cell Lung Cancer Using Clinical Factors, Dosimetric Parameters, and Pretreatment Cytokine Levels. Transl Oncol 11:102-108
Sun, Yilun; Hawkins, Peter G; Bi, Nan et al. (2018) Serum MicroRNA Signature Predicts Response to High-Dose Radiation Therapy in Locally Advanced Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 100:107-114
Kong, Feng-Ming Spring; Li, Ling; Wang, Weili et al. (2018) Greater reduction in mid-treatment FDG-PET volume may be associated with worse survival in non-small cell lung cancer. Radiother Oncol :
Shilkrut, Mark; Sapir, Eli; Hanasoge, Sheela et al. (2018) Phase I Trial of Dose-escalated Whole Liver Irradiation With Hepatic Arterial Fluorodeoxyuridine/Leucovorin and Streptozotocin Followed by Fluorodeoxyuridine/Leucovorin and Chemoembolization for Patients With Neuroendocrine Hepatic Metastases. Am J Clin Oncol 41:326-331
Jackson, William C; Tao, Yebin; Mendiratta-Lala, Mishal et al. (2018) Comparison of Stereotactic Body Radiation Therapy and Radiofrequency Ablation in the Treatment of Intrahepatic Metastases. Int J Radiat Oncol Biol Phys 100:950-958
Miften, Moyed; Vinogradskiy, Yevgeniy; Moiseenko, Vitali et al. (2018) Radiation Dose-Volume Effects for Liver SBRT. Int J Radiat Oncol Biol Phys :

Showing the most recent 10 out of 289 publications