The fundamental goal of this work is to improve our ability to optimize the overall plan for each patient's treatment course (""""""""comprehensive"""""""" treatment course optimization). Current planning methods make use of only a static single instance of the patient's anatomy (typically a treatment planning CT scan), and create an optimized treatment plan based on the clinical therapy prescription, using interactive or inverse planning optimization techniques (for Intensity Modulated Radiation Therapy (IMRT)). However, our knowledge of the patient and treatment goals is not static, but dynamic. Throughout the patient's course of treatment, we obtain new information on geometrical localization, inter- and intra-fraction motion, clinical response, and the precision to which we can predict uncertainties in the data used for planning. To better account for and utiltize this knowledge, the proposed research will develop and evaluate new paradigms for comprehensive optimization of the entire treatment course, evaluating potential improvements over the single-instance planning/optimization techniques which are widely used throughout the radiotherapy community. The project will develop a planning/optimization framework for individualized optimization which incorporates geometric, dosimetric, clinical and biological information as it becomes available (Aim 1), study improvements in single-stage optimization procedures for the multi-criteria problems encountered in therapy planning (Aim 2), and explicitly investigate multi-stage optimization methods for planning and delivery of the entire treatment course (Aim 3). This project will show that development of plan optimization strategies which 1) explicitly account for setup uncertainty and/or organ motion, 2) make use of updated clinical, biological, dosimetric and geometric information to refine the plan, and 3) model and optimize multi-stage adaptive therapy for the entire treatment course will better tailor the overall treatment plan to each individual patient and predict improvements over the current static inverse plan generated once for each patient.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA059827-14
Application #
7882422
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
14
Fiscal Year
2009
Total Cost
$401,718
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Johansson, Adam; Balter, James M; Cao, Yue (2018) Abdominal DCE-MRI reconstruction with deformable motion correction for liver perfusion quantification. Med Phys 45:4529-4540
Tseng, Huan-Hsin; Luo, Yi; Ten Haken, Randall K et al. (2018) The Role of Machine Learning in Knowledge-Based Response-Adapted Radiotherapy. Front Oncol 8:266
Jochems, Arthur; El-Naqa, Issam; Kessler, Marc et al. (2018) A prediction model for early death in non-small cell lung cancer patients following curative-intent chemoradiotherapy. Acta Oncol 57:226-230
Rosen, Benjamin S; Hawkins, Peter G; Polan, Daniel F et al. (2018) Early Changes in Serial CBCT-Measured Parotid Gland Biomarkers Predict Chronic Xerostomia After Head and Neck Radiation Therapy. Int J Radiat Oncol Biol Phys 102:1319-1329
Luo, Yi; McShan, Daniel L; Matuszak, Martha M et al. (2018) A multiobjective Bayesian networks approach for joint prediction of tumor local control and radiation pneumonitis in nonsmall-cell lung cancer (NSCLC) for response-adapted radiotherapy. Med Phys :
Simeth, Josiah; Johansson, Adam; Owen, Dawn et al. (2018) Quantification of liver function by linearization of a two-compartment model of gadoxetic acid uptake using dynamic contrast-enhanced magnetic resonance imaging. NMR Biomed 31:e3913
Mendiratta-Lala, Mishal; Masch, William; Shankar, Prasad R et al. (2018) MR Imaging Evaluation of Hepatocellular Carcinoma Treated with Stereotactic Body Radiation Therapy (SBRT): Long Term Imaging Follow-Up. Int J Radiat Oncol Biol Phys :
Ohri, Nitin; Tomé, Wolfgang A; Méndez Romero, Alejandra et al. (2018) Local Control After Stereotactic Body Radiation Therapy for Liver Tumors. Int J Radiat Oncol Biol Phys :
Mendiratta-Lala, Mishal; Gu, Everett; Owen, Dawn et al. (2018) Imaging Findings Within the First 12 Months of Hepatocellular Carcinoma Treated With Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys 102:1063-1069
Wang, Shulian; Campbell, Jeff; Stenmark, Matthew H et al. (2018) A model combining age, equivalent uniform dose and IL-8 may predict radiation esophagitis in patients with non-small cell lung cancer. Radiother Oncol 126:506-510

Showing the most recent 10 out of 289 publications