The purpose of Core 2 Biostatistics is to provide statistical support to the four Projects as well as to the initiatives involving clinical studies through Core 3 and statistical assessment of biospecimens through Core 1, all toward the goal of development of curative options for patients with AML, MDS, and CMML. This Core assures that the design, conduct, and analyses of all experiments?clinical, correlative, animal, or basic science- -use robust statistical techniques that are appropriately implemented. This central resource thereby helps to elucidate the mechanisms as well as the vulnerabilities of myeloid malignancies.

Public Health Relevance

- Core 2 Biostatistics The goal of Core 2 Biostatistics is to assure that all experiments conducted through this P01 in in myeloid malignancies have access to state-of-the-art statistical support for their design and analysis. This extends to the basic science and murine experiments described in the four Projects, as well as to the clinical and correlative studies undertaken in conjunction with the Clinical Core (Core 3) and the Biospecimen Core (Core 1). This assures that the work performed on this P01 will be robust and reproducible, and thereby contribute to an improved understanding of these diseases.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA066996-21
Application #
9854840
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
2025-04-30
Budget Start
2020-03-15
Budget End
2021-02-28
Support Year
21
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Patel, Sanjay S; Kuo, Frank C; Gibson, Christopher J et al. (2018) High NPM1-mutant allele burden at diagnosis predicts unfavorable outcomes in de novo AML. Blood 131:2816-2825
Montero, Joan; Letai, Antony (2018) Why do BCL-2 inhibitors work and where should we use them in the clinic? Cell Death Differ 25:56-64
DeAngelo, Daniel J; Brunner, Andrew M; Werner, Lillian et al. (2018) A phase I study of lenalidomide plus chemotherapy with mitoxantrone, etoposide, and cytarabine for the reinduction of patients with acute myeloid leukemia. Am J Hematol 93:254-261
Fink, Emma C; McConkey, Marie; Adams, Dylan N et al. (2018) CrbnI391V is sufficient to confer in vivo sensitivity to thalidomide and its derivatives in mice. Blood 132:1535-1544
Wroblewski, Mark; Scheller-Wendorff, Marina; Udonta, Florian et al. (2018) BET-inhibition by JQ1 promotes proliferation and self-renewal capacity of hematopoietic stem cells. Haematologica 103:939-948
Konopleva, Marina; Letai, Anthony (2018) BCL-2 inhibition in AML: an unexpected bonus? Blood 132:1007-1012
Donovan, Katherine A; An, Jian; Nowak, Rados?aw P et al. (2018) Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome. Elife 7:
Lee, J Scott; Roberts, Andrew; Juarez, Dennis et al. (2018) Statins enhance efficacy of venetoclax in blood cancers. Sci Transl Med 10:
Liu, Bee Hui; Jobichen, Chacko; Chia, C S Brian et al. (2018) Targeting cancer addiction for SALL4 by shifting its transcriptome with a pharmacologic peptide. Proc Natl Acad Sci U S A 115:E7119-E7128
Kahn, Josephine D; Miller, Peter G; Silver, Alexander J et al. (2018) PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood 132:1095-1105

Showing the most recent 10 out of 376 publications