The AML1/CBFbeta transcription factor complex is one of the most frequent targets of genetic alterations in human acute leukemia, being targeted in up to one-third of acute myeloid and lymphoblastic leukemia by either chromosomal induced rearrangements, or point mutation. Prior work from my laboratory has demonstrated that AMNL1 normally functions as a master regulatory transcriptional switch that is essential for the formation of the definitive hematopoietic systems. In our preliminary data, we now extend this observation to show that AML1/CBFbeta establishes, in a dose-dependent manner, a transcriptional cascade that is required for the formation of definitive hematopoietic stem cells (HSCs) in the aorta-gonad mesonephros region (AGM) of the developing embryo. Moreover, subtle alterations in the level of AML1/CBFbeta induces dramatic changes in the temporal and spatial generation of HSCs, shifting them from their normal position in the AGM to the yolk sac. The initiation of leukemia by chromosomal rearrangement-induced-induced alteration in ABL1/CBFbeta appears to result at least in part, from a partial dominant negative inhibition of normal AML1/CBFbeta, leading to alterations in the self-renewal and maturation of HSCs. Importantly, however, our preliminary data clearly demonstrates that AML1-ETO alone is insufficient to induce leukemia, but rather must cooperate with secondary genetic alterations to transform HSC. Based on these observations, our working hypothesis is that a certain threshold level of AML1/CBFbeta is required for the function of HSC. Genetic changes that decrease the activity of the complex below this level directly alter HSC growth, leading to a pool of """"""""pre-leukemic) cells that must acquire secondary mutations before they can generate a full leukemic phenotype. To directly address this hypothesis, experiments are proposed in Specific Aim 1 that will utilize a conditional AML1-ETO knock in-mouse that was recently generated in my laboratory to define the spectrum of secondary mutations able to cooperate with AML1-ETO to induce leukemia.
In Specific Aim 2, we will extend these studies to determine how AML1 mutations identified in familial and sporadic cases of AML predispose to leukemia through the generation of mice containing these mutations in their germline. Together these studies should provide critical insights into the molecular pathology of the core-binding factor leukemia. Moreover, the murine models developed through these efforts should prove to be valuable reagents through which to assess the potential therapeutic use of drugs targeted toward either AML1-ETO or its bound nuclear co-repressors.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA071907-06
Application #
6492306
Study Section
Project Start
1996-08-01
Project End
2006-05-31
Budget Start
Budget End
Support Year
6
Fiscal Year
2001
Total Cost
$241,412
Indirect Cost
Name
St. Jude Children's Research Hospital
Department
Type
DUNS #
067717892
City
Memphis
State
TN
Country
United States
Zip Code
38105
Dumitrache, Lavinia C; McKinnon, Peter J (2017) Polynucleotide kinase-phosphatase (PNKP) mutations and neurologic disease. Mech Ageing Dev 161:121-129
Ribeiro, Raul C; Antillon, Federico; Pedrosa, Francisco et al. (2016) Global Pediatric Oncology: Lessons From Partnerships Between High-Income Countries and Low- to Mid-Income Countries. J Clin Oncol 34:53-61
Doherty, Joanne R; Nilsson, Lisa M; Kuliyev, Emin et al. (2014) Embryonic Expression and Function of the Xenopus Ink4d Cyclin D-Dependent Kinase Inhibitor. Cell Dev Biol 3:
Morfouace, Marie; Shelat, Anang; Jacus, Megan et al. (2014) Pemetrexed and gemcitabine as combination therapy for the treatment of Group3 medulloblastoma. Cancer Cell 25:516-29
Wang, Yuefeng; Fisher, John C; Mathew, Rose et al. (2011) Intrinsic disorder mediates the diverse regulatory functions of the Cdk inhibitor p21. Nat Chem Biol 7:214-21
Trikha, Prashant; Sharma, Nidhi; Opavsky, Rene et al. (2011) E2f1-3 are critical for myeloid development. J Biol Chem 286:4783-95
Doghman, Mabrouka; El Wakil, Abeer; Cardinaud, Bruno et al. (2010) Regulation of insulin-like growth factor-mammalian target of rapamycin signaling by microRNA in childhood adrenocortical tumors. Cancer Res 70:4666-75
Pottier, N; Paugh, S W; Ding, C et al. (2010) Promoter polymorphisms in the ?-2 adrenergic receptor are associated with drug-induced gene expression changes and response in acute lymphoblastic leukemia. Clin Pharmacol Ther 88:854-61
Huang, Danny T; Ayrault, Olivier; Hunt, Harold W et al. (2009) E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Mol Cell 33:483-95
Forget, Antoine; Ayrault, Olivier; den Besten, Willem et al. (2008) Differential post-transcriptional regulation of two Ink4 proteins, p18 Ink4c and p19 Ink4d. Cell Cycle 7:3737-46

Showing the most recent 10 out of 124 publications