The Cytometry Core will provide effective, high quality support in quantitative cytology to the Program Project. This core is formed by consolidating expertise in operation and maintenance of four analytical cytology facilities in the Section of Cancer Biology. The facilities overseen by the Core consist of 1) flow cytometry, 2) image analysis, 3) microinjection, and 4) electrophoresis gel densitometry. Each facility is operated by a manager who is committed to 'state-of- the-art' operation of the resources. The Core Leaders and facility Managers are involved in the scientific leadership of the Program Project, and are collaborating to develop novel applications of the Core resources that will benefit each project.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA075556-05
Application #
6467389
Study Section
Project Start
2001-07-01
Project End
2003-06-30
Budget Start
Budget End
Support Year
5
Fiscal Year
2001
Total Cost
Indirect Cost
Name
Washington University
Department
Type
DUNS #
062761671
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Sun, Lunching; Huang, Lei; Nguyen, Phuongmai et al. (2008) DNA methyltransferase 1 and 3B activate BAG-1 expression via recruitment of CTCFL/BORIS and modulation of promoter histone methylation. Cancer Res 68:2726-35
Iliakis, George; Wu, Wenqi; Wang, Minli (2008) DNA double strand break repair inhibition as a cause of heat radiosensitization: re-evaluation considering backup pathways of NHEJ. Int J Hyperthermia 24:17-29
Laszlo, Andrei; Davidson, Teri; Harvey, Amanda et al. (2006) Alterations in heat-induced radiosensitization accompanied by nuclear structure alterations in Chinese hamster cells. Int J Hyperthermia 22:43-60
Ahmad, Iman M; Aykin-Burns, Nukhet; Sim, Julia E et al. (2005) Mitochondrial O2*- and H2O2 mediate glucose deprivation-induced stress in human cancer cells. J Biol Chem 280:4254-63
Myerson, R J; Roti Roti, J L; Moros, E G et al. (2004) Modelling heat-induced radiosensitization: clinical implications. Int J Hyperthermia 20:201-12
Gius, David; Cui, Hengmi; Bradbury, C Matthew et al. (2004) Distinct effects on gene expression of chemical and genetic manipulation of the cancer epigenome revealed by a multimodality approach. Cancer Cell 6:361-71
Iliakis, G; Krieg, T; Guan, J et al. (2004) Evidence for an S-phase checkpoint regulating DNA replication after heat shock: a review. Int J Hyperthermia 20:240-9
Vanderwaal, R P; Roti Roti, J L (2004) Heat induced 'masking' of redox sensitive component(s) of the DNA-nuclear matrix anchoring complex. Int J Hyperthermia 20:234-9
Dynlacht, J R; Xu, M; Pandita, R K et al. (2004) Effects of heat shock on the Mre11/Rad50/Nbs1 complex in irradiated or unirradiated cells. Int J Hyperthermia 20:144-56
Ohiro, Yoichi; Usheva, Anny; Kobayashi, Shinichiro et al. (2003) Inhibition of stress-inducible kinase pathways by tumorigenic mutant p53. Mol Cell Biol 23:322-34

Showing the most recent 10 out of 37 publications