Insights gained primarily from in vitro models of p53 regulators and effectors within our research program have led to a critical need for in vivo validation and the ability to gain further understanding using in vivo models. The phenotypes that are actively being examined in the p53 paradigm are no longer simply a matter of cell death, growth arrest or senescence. Instead, the role of p53 activation in vivo will likely have different consequences in different cell and tissue types and will likely differ with regard to developmental stages. This Core maintains stocks of human and animal tumor cell lines as well as genetically engineered cell lines that are used within the Program. The Core also derives and maintains adequate stocks of early passage aliquots of frozen primary cells derived from mouse strains for distribution to the investigators in the Program. The research efforts of our productive and collaborative program greatly benefit from an in vivo models component, which maintains small breeding colonies of critically needed mouse strains for genetic and cell biologic investigations by our investigators. The high cost of animal studies in barrier facilities can be reduced substantially by the availability of shared technical support for mouse breeding and genetic analyses and for shared immuno-histochemistry. The cost effectiveness is further emphasized by the shared use of the same genetically modified strains by several investigators and projects within the Program. The Cell and Animal Model Core will derive and maintain human and mouse cell lines as well as adequate stocks of early passage aliquots of frozen primary cells utilized by the projects. The Core will also acquire and maintain steadily used mouse models (transgenic, knockouts, etc.) and primary cells derived from these mice for distribution to the investigators in the Program. Lastly, the core will provide expertise and guidance in the preparation of tissue and/or embryos for analyses of gene expression (protein and mRNA in situ) and histopathology.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA080058-07
Application #
7311076
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2006-07-01
Budget End
2007-06-30
Support Year
7
Fiscal Year
2006
Total Cost
$90,096
Indirect Cost
Name
Mount Sinai School of Medicine
Department
Type
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Pappas, Kyrie; Xu, Jia; Zairis, Sakellarios et al. (2017) p53 Maintains Baseline Expression of Multiple Tumor Suppressor Genes. Mol Cancer Res 15:1051-1062
Mungamuri, Sathish Kumar; Qiao, Rui F; Yao, Shen et al. (2016) USP7 Enforces Heterochromatinization of p53 Target Promoters by Protecting SUV39H1 from MDM2-Mediated Degradation. Cell Rep 14:2528-37
Muñoz-Fontela, César; Mandinova, Anna; Aaronson, Stuart A et al. (2016) Emerging roles of p53 and other tumour-suppressor genes in immune regulation. Nat Rev Immunol 16:741-750
Ou, Yang; Wang, Shang-Jui; Li, Dawei et al. (2016) Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci U S A 113:E6806-E6812
Guernet, Alexis; Mungamuri, Sathish Kumar; Cartier, Dorthe et al. (2016) CRISPR-Barcoding for Intratumor Genetic Heterogeneity Modeling and Functional Analysis of Oncogenic Driver Mutations. Mol Cell 63:526-38
Meslamani, Jamel; Smith, Steven G; Sanchez, Roberto et al. (2016) Structural features and inhibitors of bromodomains. Drug Discov Today Technol 19:3-15
Hwang, So-Young; Deng, Xianming; Byun, Sanguine et al. (2016) Direct Targeting of ?-Catenin by a Small Molecule Stimulates Proteasomal Degradation and Suppresses Oncogenic Wnt/?-Catenin Signaling. Cell Rep 16:28-36
Shi, D; Dai, C; Qin, J et al. (2016) Negative regulation of the p300-p53 interplay by DDX24. Oncogene 35:528-36
Tavana, Omid; Li, Dawei; Dai, Chao et al. (2016) HAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma. Nat Med 22:1180-1186
Wang, Donglai; Kon, Ning; Lasso, Gorka et al. (2016) Acetylation-regulated interaction between p53 and SET reveals a widespread regulatory mode. Nature 538:118-122

Showing the most recent 10 out of 101 publications