) The overarching goal of this Program Project Grant is to elucidate key aspects of breast development and breast carcinogenesis. The principal research emphasis of the component research programs is a study of the biological function of proteins that play important roles in controlling these processes. The goal of this core is to develop and to make available useful protein expression methodologies that will promote these studies. The work in this core will be divided into two general components. One portion of the work will provide reagents to other investigators in this Program. These services will include the establishment of a bank of approximately 100 key breast genes cloned as full length coding regions and available in all commonly used protein expression vectors (Specific Aim 1). This bank will include genes that are currently known to play a role in yeast development or in the development of breast tumors. In addition, core services will provide normalized cDNA libraries for use in molecular biology, functional, or genetic screens (Specific Aim 2). We also will begin the technology development needed to establish an array of cDNAs in vectors that allow functional testing. The ultimate goal of this work will be to capture all genes expressed in the breast. For the five year period of this grant, our goal will be to isolate 10,000 full length sequences and have them available in vectors that promote functional screens (Specific Aim 3).

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA080111-04
Application #
6563946
Study Section
Subcommittee G - Education (NCI)
Project Start
2002-02-01
Project End
2003-01-31
Budget Start
Budget End
Support Year
4
Fiscal Year
2002
Total Cost
$291,807
Indirect Cost
Name
Whitehead Institute for Biomedical Research
Department
Type
DUNS #
076580745
City
Cambridge
State
MA
Country
United States
Zip Code
02142
Li, Andrew G; Murphy, Elizabeth C; Culhane, Aedin C et al. (2018) BRCA1-IRIS promotes human tumor progression through PTEN blockade and HIF-1? activation. Proc Natl Acad Sci U S A 115:E9600-E9609
Wu, Yanming; Zhang, Zhao; Cenciarini, Mauro E et al. (2018) Tamoxifen Resistance in Breast Cancer Is Regulated by the EZH2-ER?-GREB1 Transcriptional Axis. Cancer Res 78:671-684
Witwicki, Robert M; Ekram, Muhammad B; Qiu, Xintao et al. (2018) TRPS1 Is a Lineage-Specific Transcriptional Dependency in Breast Cancer. Cell Rep 25:1255-1267.e5
Jeselsohn, Rinath; Bergholz, Johann S; Pun, Matthew et al. (2018) Allele-Specific Chromatin Recruitment and Therapeutic Vulnerabilities of ESR1 Activating Mutations. Cancer Cell 33:173-186.e5
Hinohara, Kunihiko; Wu, Hua-Jun; Vigneau, Sébastien et al. (2018) KDM5 Histone Demethylase Activity Links Cellular Transcriptomic Heterogeneity to Therapeutic Resistance. Cancer Cell 34:939-953.e9
Wan, Lixin; Xu, Kexin; Wei, Yongkun et al. (2018) Phosphorylation of EZH2 by AMPK Suppresses PRC2 Methyltransferase Activity and Oncogenic Function. Mol Cell 69:279-291.e5
Xiao, Tengfei; Li, Wei; Wang, Xiaoqing et al. (2018) Estrogen-regulated feedback loop limits the efficacy of estrogen receptor-targeted breast cancer therapy. Proc Natl Acad Sci U S A 115:7869-7878
Zhang, Jinfang; Bu, Xia; Wang, Haizhen et al. (2018) Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 553:91-95
Dreijerink, Koen M A; Timmers, H T Marc; Brown, Myles (2017) Twenty years of menin: emerging opportunities for restoration of transcriptional regulation in MEN1. Endocr Relat Cancer 24:T135-T145
Rashidian, Mohammad; Ingram, Jessica R; Dougan, Michael et al. (2017) Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J Exp Med 214:2243-2255

Showing the most recent 10 out of 136 publications