The ability to engineer cells and return them to the body to carry out specific therapeutic tasks is an important objective that has become increasingly feasible in recent years as the technologies for cell harvesting, expansion and manipulation have become more sophisticated. However it has been repeatedly found that the majority of cells reinfused after ex vivo manipulation become trapped in the lungs, liver and spleen. We propose to improve the availability of reinfused cells through a variety of approaches. Our research plan is guided by three principal hypotheses. We assume that the principal factor in lung entrapment of lymphocytes is mechanical- i.e., that it is due to both lymphocyte size and local regulation of pulmonary microvascular circulation. The latter takes into account tension. We assume that the principal vector in liver and spleen entrapment is the macrophage foreign body reaction and the hepatocyte asialoglycoprotein receptor recycling pathway. Finally, we assume that the most significant factor for the persistence of the T cells that survive these challenges is their ability to endure the absence of interleukin 2 (IL- 2). We hypothesize that if T cells can be endowed with an ability to evade growth factor withdrawal they can begin to form a more generally applicable cellular platform for tumor therapy, and in this context we propose to explore different approaches to enhance their ability to adhere to an extravasate through tumor microvascular endothelium.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
1P01CA080124-01A1
Application #
6402410
Study Section
Subcommittee E - Prevention &Control (NCI)
Project Start
2000-08-11
Project End
2005-07-31
Budget Start
Budget End
Support Year
1
Fiscal Year
2000
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02199
Grassberger, Clemens; Hong, Theodore S; Hato, Tai et al. (2018) Differential Association Between Circulating Lymphocyte Populations With Outcome After Radiation Therapy in Subtypes of Liver Cancer. Int J Radiat Oncol Biol Phys 101:1222-1225
Zhang, Na; Chen, Jie; Ferraro, Gino B et al. (2018) Anti-VEGF treatment improves neurological function in tumors of the nervous system. Exp Neurol 299:326-333
Aoki, Shuichi; Cobbold, Mark; Zhu, Andrew X et al. (2018) Can smart nanomedicine deliver effective targeted cytotoxic treatments to hepatocellular carcinomas while reducing the liver damage? Hepatology 67:826-828
Li, Wende; Liu, Yujiao; Yang, Weining et al. (2018) MicroRNA-378 enhances radiation response in ectopic and orthotopic implantation models of glioblastoma. J Neurooncol 136:63-71
Griveau, Amelie; Seano, Giorgio; Shelton, Samuel J et al. (2018) A Glial Signature and Wnt7 Signaling Regulate Glioma-Vascular Interactions and Tumor Microenvironment. Cancer Cell 33:874-889.e7
Stylianopoulos, Triantafyllos; Munn, Lance L; Jain, Rakesh K (2018) Reengineering the Physical Microenvironment of Tumors to Improve Drug Delivery and Efficacy: From Mathematical Modeling to Bench to Bedside. Trends Cancer 4:292-319
Incio, Joao; Ligibel, Jennifer A; McManus, Daniel T et al. (2018) Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2. Sci Transl Med 10:
Sung, Yun-Chieh; Liu, Ya-Chi; Chao, Po-Han et al. (2018) Combined delivery of sorafenib and a MEK inhibitor using CXCR4-targeted nanoparticles reduces hepatic fibrosis and prevents tumor development. Theranostics 8:894-905
Jain, Rakesh K; Batista, Ana (2018) A Physical View of Cancer. Trends Cancer 4:257
Li, Suyan; Kumar T, Peeyush; Joshee, Sampada et al. (2018) Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior. Cell Res 28:221-248

Showing the most recent 10 out of 320 publications