Glioblastoma (GBM) is the most common and most aggressive brain tumor in humans. Because it is highly angiogenic, the anti-vascular endothelial growth factor (VEGF) antibody bevacizumab has now^ become the standard of care for treatment of recurrent GBM. We have found that vessel normalization and subsequent reduction of brain edema accounts for a major part of anti-VEGF treatment's benefit in GBM. However, this resulting benefit is modest and tumors inevitably progress and may even develop an increased invasive phenotype. To overcome this resistance, we aim to target two pathways that increase during escape from vessel normalization:
ANG2 (Aims 1 & 2) and SDFla/CXCR4 (Aim 3). Based on our prelinrdnary data, we hypothesize that anti-ANG2 therapy will increase the efficacy of anti-VEGF therapy by increasing the window of normalization and thereby sustainably decreasing edema (Aim 1). We also hypothesize that anti-VEGF and ANG2 combined therapy will polarize pro-tumor tumor-associated macrophages (TAMs) to anti-tumor TAMs and thus increase tumor response and mouse survival (Aim 2). Lastly, CXCR4-blockade can reduce infiltration and activation of immtmosuppressive (Gr-1+) BMDCs in non-CNS tumors, and preliminary evidence shows that SDFIa can reduce GBM invasion caused by anti-VEGF treatment. Thus, we now propose to use both genetic and pharmacologic approaches to test the role SDFla/CXCR4-blockade in improving the outcome of anti-VEGF therapy (Aim 3). TTie proposed work will reveal the molecular, cellular and physiological mechanisms of action of anti-Ang-2 and anti-SDF1alpha/CXCR4 agents in GBM - alone and with anti-VEGF agents, and inform the planned clinical trials with these agents in GBM patients.

Public Health Relevance

We propose a comprehensive approach to dissect the mechanisms of GBM escape from anti-VEGF therapy. We will examine two distinct pathways of evasion that emerged from our preclinical and clinical studies in GBM. Our research will generate important and translatable results for new combination therapy paradigms that are desperately needed for this dreadful disease.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
4P01CA080124-15
Application #
9057974
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2016-05-01
Budget End
2017-04-30
Support Year
15
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
Ina Ly, K; Vakulenko-Lagun, Bella; Emblem, Kyrre E et al. (2018) Probing tumor microenvironment in patients with newly diagnosed glioblastoma during chemoradiation and adjuvant temozolomide with functional MRI. Sci Rep 8:17062
Nowak-Sliwinska, Patrycja; Alitalo, Kari; Allen, Elizabeth et al. (2018) Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 21:425-532
Zhao, Yingchao; Liu, Pinan; Zhang, Na et al. (2018) Targeting the cMET pathway augments radiation response without adverse effect on hearing in NF2 schwannoma models. Proc Natl Acad Sci U S A 115:E2077-E2084
Hong, Theodore S; Grassberger, Clemens; Yeap, Beow Y et al. (2018) Pretreatment plasma HGF as potential biomarker for susceptibility to radiation-induced liver dysfunction after radiotherapy. NPJ Precis Oncol 2:22
Pinter, Matthias; Kwanten, Wilhelmus J; Jain, Rakesh K (2018) Renin-Angiotensin System Inhibitors to Mitigate Cancer Treatment-Related Adverse Events. Clin Cancer Res 24:3803-3812
Arvanitis, Costas D; Askoxylakis, Vasileios; Guo, Yutong et al. (2018) Mechanisms of enhanced drug delivery in brain metastases with focused ultrasound-induced blood-tumor barrier disruption. Proc Natl Acad Sci U S A 115:E8717-E8726
Khandekar, Melin J; Jain, Rakesh (2018) Smooth sailing for immunotherapy for unresectable stage III non-small cell lung cancer: the PACIFIC study. Transl Cancer Res 7:S16-S20
Stylianopoulos, Triantafyllos; Munn, Lance L; Jain, Rakesh K (2018) Reengineering the Tumor Vasculature: Improving Drug Delivery and Efficacy. Trends Cancer 4:258-259
Grassberger, Clemens; Hong, Theodore S; Hato, Tai et al. (2018) Differential Association Between Circulating Lymphocyte Populations With Outcome After Radiation Therapy in Subtypes of Liver Cancer. Int J Radiat Oncol Biol Phys 101:1222-1225
Zhang, Na; Chen, Jie; Ferraro, Gino B et al. (2018) Anti-VEGF treatment improves neurological function in tumors of the nervous system. Exp Neurol 299:326-333

Showing the most recent 10 out of 320 publications