Cervical cancer is the second most common malignancy in women worldwide. In the developing world it is the leading cause of cancer death among women. The clinical development of optical technologies for screening and diagnosis holds great promise for fighting cervical cancer worldwide. The goal of this Program Project is to integrate advances in early cancer biology and optical technology to develop cost-effective screening tools to aid in early detection of cervical cancer. We have demonstrated that optical technologies have significant potential to improve cervical cancer screening in a way that can enable screening in resource poor settings. Over the last nine years, we have carried out multi-center clinical trials to rigorously evaluate the performance and cost-effectiveness of quantitative optical technologies in more than 4,000 patients. Our results show that automated quantitative imaging and analysis of cytologic smears and histopathologic specimens can objectify and improve screening and diagnosis of cervical cancer and its precursors. The goal of Project 2 is the translation of research technologies into clinically ready processes poised for evaluation in large multi-center trials. We will conduct trials to determine the technical efficacy of all instruments under study in this Program Project. Specifically, we will test: a multispectral digital colposcope (MDC) to evaluate its performance alone and as an adjunct to colposcopy in diagnosis, the screening potential of a battery-powered diagnostic imaging aid (DIA) optimized for use in low-resource settings, an in vivo confocal microscope to facilitate diagnosis by improving the selection of tissue sites for biopsy, and the quantitative imaging of contrast agents to enhance detection of cervical lesions. Instruments that are found to improve upon the sensitivity and specificity of current technology can improve patient outcomes by better guiding treatment, control costs by sparing unnecessary interventions, and improve patient participation in screening and follow-up by inspiring confidence in clinical tests. Devices that match the performance of current technology can enable cancer detection programs in low-resource settings by replacing infrastructure, moderating the need for expert personnel, or reducing procurement and operating costs of equipment.
Showing the most recent 10 out of 110 publications