We hypothesize the existence of a p53-regulated nutrient-sensing metabolism checkpoint, in which dysregulation of key nutrients needed for oxidative metabolism drives accumulation of lipid peroxides. These lipid peroxides may enable activation of scavenging mechanisms that resolve the nutrient scarcity, induce alternative metabolic pathways that bypass the need for the scarce nutrients, and/or drive activation of ferroptotic cell death to eliminate cells damaged by nutrient scarcity. We suggest that each of these outputs can lead to a tumor suppressive phenotype, and that understanding the mechanisms that govern these processes is critical for understanding the evolution of human cancers and how they may be addressed with precision therapeutics. We focus here on the role of the p53 network in this checkpoint and its impact on tumor suppression. We have two major goals?to define how regulation of the mevalonate pathway by p53 alters sensitivity to ferroptosis in hepatocellular carcinomas and to define the regulatory mechanisms governing polyunsaturated fatty acid metabolism in lymphomas. Together, we suggest that these studies will define a critical new axis of p53-mediated tumor suppression and provide a new avenue for creation of precision cancer medicines.
We are seeking to understand the intersection between the p53 network and ferroptosis, a form of regulated, non-apoptotic cell death discovered by the Stockwell Lab that has been suggested to participate in p53?s tumor suppression activity. We are examining two main hypotheses: first, that p53 regulates the mevalonate pathway, which drives resistance to ferroptosis through the biosynthesis of coenzyme Q10 and second, that p21 regulates sensitivity to ferroptosis. If successful, this research may illuminate new strategies for the treatment of specific patient tumors based on molecular properties, which is a goal of precision cancer research, and may provide new insights into how p53 suppresses tumorigenesis in lymphomas and hepatocellular carcinomas.
Rokudai, Susumu; Li, Yingchun; Otaka, Yukihiro et al. (2018) STXBP4 regulates APC/C-mediated p63 turnover and drives squamous cell carcinogenesis. Proc Natl Acad Sci U S A 115:E4806-E4814 |
Rastogi, Chaitanya; Rube, H Tomas; Kribelbauer, Judith F et al. (2018) Accurate and sensitive quantification of protein-DNA binding affinity. Proc Natl Acad Sci U S A 115:E3692-E3701 |
Baugh, Evan H; Ke, Hua; Levine, Arnold J et al. (2018) Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ 25:154-160 |
Agmon, Eran; Solon, Jérôme; Bassereau, Patricia et al. (2018) Modeling the effects of lipid peroxidation during ferroptosis on membrane properties. Sci Rep 8:5155 |
Yozwiak, Carrie E; Hirschhorn, Tal; Stockwell, Brent R (2018) Toward a Microparticle-Based System for Pooled Assays of Small Molecules in Cellular Contexts. ACS Chem Biol 13:761-771 |
Hirschhorn, Tal; Stockwell, Brent R (2018) The development of the concept of ferroptosis. Free Radic Biol Med : |
Liu, Hengrui; Schreiber, Stuart L; Stockwell, Brent R (2018) Targeting Dependency on the GPX4 Lipid Peroxide Repair Pathway for Cancer Therapy. Biochemistry 57:2059-2060 |
Conrad, Marcus; Kagan, Valerian E; Bayir, Hülya et al. (2018) Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev 32:602-619 |
Zhang, Yan; Larraufie, Marie-Hélène; Musavi, Leila et al. (2018) Design of Small Molecules That Compete with Nucleotide Binding to an Engineered Oncogenic KRAS Allele. Biochemistry 57:1380-1389 |
Shimada, Kenichi; Reznik, Eduard; Stokes, Michael E et al. (2018) Copper-Binding Small Molecule Induces Oxidative Stress and Cell-Cycle Arrest in Glioblastoma-Patient-Derived Cells. Cell Chem Biol 25:585-594.e7 |
Showing the most recent 10 out of 159 publications