The principal objective of the Bioinformatics Core will be to provide project investigators a resource for bioinformatics analysis and interpretation of high throughput experiments performed in each project. In support of this objective, the specific aims of the Bioinformatics Core B include: 1. Analysis of ChlP-seq results 2. Analysis of microarray or RNA-seq measures of mRNA and miRNA abundance 3. Identify biological networks that operate among different cell types in the tumor microenvironment 4. Develop decision-making tools for TME biomarkers and human relevance

Public Health Relevance

Bioinformatics Core B will provide analysis of high throughput experiments performed in Projects 1, 2, and 3. This resource will identify biochemical and genetic networks that are important in the interactions of cell types in the tumor microenvironment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
4P01CA097189-10
Application #
9091441
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2016-06-01
Budget End
2017-05-31
Support Year
10
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Ohio State University
Department
Type
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Sizemore, Steven T; Mohammad, Rahman; Sizemore, Gina M et al. (2018) Synthetic Lethality of PARP Inhibition and Ionizing Radiation is p53-dependent. Mol Cancer Res 16:1092-1102
Pitarresi, Jason R; Liu, Xin; Avendano, Alex et al. (2018) Disruption of stromal hedgehog signaling initiates RNF5-mediated proteasomal degradation of PTEN and accelerates pancreatic tumor growth. Life Sci Alliance 1:e201800190
Ahirwar, Dinesh K; Nasser, Mohd W; Ouseph, Madhu M et al. (2018) Fibroblast-derived CXCL12 promotes breast cancer metastasis by facilitating tumor cell intravasation. Oncogene 37:4428-4442
Rudolph, M; Sizemore, S T; Lu, Y et al. (2018) A hedgehog pathway-dependent gene signature is associated with poor clinical outcomes in Luminal A breast cancer. Breast Cancer Res Treat 169:457-467
Sizemore, Gina M; Balakrishnan, Subhasree; Thies, Katie A et al. (2018) Stromal PTEN determines mammary epithelial response to radiotherapy. Nat Commun 9:2783
Victor, Aaron R; Nalin, Ansel P; Dong, Wenjuan et al. (2017) IL-18 Drives ILC3 Proliferation and Promotes IL-22 Production via NF-?B. J Immunol 199:2333-2342
Liu, Huayang; Dowdle, James A; Khurshid, Safiya et al. (2017) Discovery of Stromal Regulatory Networks that Suppress Ras-Sensitized Epithelial Cell Proliferation. Dev Cell 41:392-407.e6
Tang, Xing; Srivastava, Arunima; Liu, Huayang et al. (2017) annoPeak: a web application to annotate and visualize peaks from ChIP-seq/ChIP-exo-seq. Bioinformatics 33:1570-1571
Sizemore, G M; Balakrishnan, S; Hammer, A M et al. (2017) Stromal PTEN inhibits the expansion of mammary epithelial stem cells through Jagged-1. Oncogene 36:2297-2308
Hammer, Anisha M; Sizemore, Gina M; Shukla, Vasudha C et al. (2017) Stromal PDGFR-? Activation Enhances Matrix Stiffness, Impedes Mammary Ductal Development, and Accelerates Tumor Growth. Neoplasia 19:496-508

Showing the most recent 10 out of 89 publications