The Cell Biology Core provides major resources to the program project investigators, including normal human cells, an extensive library of characterized melanoma cell lines, patient-derived xenografts, and multiple models to study specific biological processes (Objective 1). The melanoma cell line library encompasses >400 cell lines, at least 200 with known genetic status. To exclude cross-contamination, all experimental cell lines are fingerprinted. Our normal cell panel includes: melanocytes, keratinocytes, fibroblasts, endothelial cells, and skin-derived stem cells. Other resources include adenoviral and lentiviral vectors for growth factors, adhesion molecules, and oncogenes and monoclonal antibodies to melanoma associated biomarkers Three-dimensional cultures of normal human skin (skin equivalents or organotypic cultures of skin) with a dermis of fibroblasts embedded in collagen and an epidermis of melanocytes/melanoma cells and keratinocytes, are also continuously available to the program investigators. This three-dimensional model is superior to standard cell culture techniques because it mimics the in vivo microenvironment for the melanocytes/melanoma cells. For screening studies the Core is providing a robotics-assisted spheroid culture model that allows investigations on melanoma cells displaying in vivo relevant architecture, cell-to cell contacts and invasion, in the presence of a collagen support matrix. The Core additionally provides subcutaneous melanoma growth models for standard experiments, including patient-derived xenografts that are exclusively maintained in vivo and using tissues provided by the Pathology Core B. For Objective 2, the Core will test compounds developed and selected for further analysis and has the knowledge and infrastructure for performing high-throughput screening both in two- and three-dimensional cultures. The responsibility of the Core is to test compounds in an expanded number of cell lines and in quality control testing through different biological assays. For Objective 3, the Core is available to train investigators of the Program in all biological assays and models. Overall, this Core will provide efficient and high quality service to all laboratories within this Program Project.

Public Health Relevance

This core supports the research projects with cell- and animal-based experimental tools and models, but also conducts experiments. The infrastructure encompasses libraries of human melanoma cell lines, viruses and antibodies, skin and tumor growth models, each reflecting different aspects of melanoma biology in patients. Most recent developments have added the capacity of the core to conduct high-throughput screening of compounds to identify novel inhibitors.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA114046-06
Application #
8759652
Study Section
Special Emphasis Panel (ZCA1-RPRB-2 (M1))
Project Start
2013-09-25
Project End
2018-08-31
Budget Start
2013-09-25
Budget End
2014-08-31
Support Year
6
Fiscal Year
2013
Total Cost
$311,228
Indirect Cost
$99,578
Name
Wistar Institute
Department
Type
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Ojha, Rani; Leli, Nektaria M; Onorati, Angelique et al. (2018) ER translocation of the MAPK pathway drives therapy resistance in BRAF mutant melanoma. Cancer Discov :
Kugel 3rd, Curtis H; Douglass, Stephen M; Webster, Marie R et al. (2018) Age Correlates with Response to Anti-PD1, Reflecting Age-Related Differences in Intratumoral Effector and Regulatory T-Cell Populations. Clin Cancer Res 24:5347-5356
Nicastri, Michael C; Rebecca, Vito W; Amaravadi, Ravi K et al. (2018) Dimeric quinacrines as chemical tools to identify PPT1, a new regulator of autophagy in cancer cells. Mol Cell Oncol 5:e1395504
Nti, Akosua A; Serrano, Leona W; Sandhu, Harpal S et al. (2018) FREQUENT SUBCLINICAL MACULAR CHANGES IN COMBINED BRAF/MEK INHIBITION WITH HIGH-DOSE HYDROXYCHLOROQUINE AS TREATMENT FOR ADVANCED METASTATIC BRAF MUTANT MELANOMA: Preliminary Results From a Phase I/II Clinical Treatment Trial. Retina :
Perego, M; Maurer, M; Wang, J X et al. (2018) A slow-cycling subpopulation of melanoma cells with highly invasive properties. Oncogene 37:302-312
Echevarría-Vargas, Ileabett M; Reyes-Uribe, Patricia I; Guterres, Adam N et al. (2018) Co-targeting BET and MEK as salvage therapy for MAPK and checkpoint inhibitor-resistant melanoma. EMBO Mol Med 10:
Hammerlindl, Heinz; Ravindran Menon, Dinoop; Hammerlindl, Sabrina et al. (2018) Acetylsalicylic Acid Governs the Effect of Sorafenib in RAS-Mutant Cancers. Clin Cancer Res 24:1090-1102
Ecker, Brett L; Kaur, Amanpreet; Douglass, Stephen M et al. (2018) Age-Related Changes in HAPLN1 Increase Lymphatic Permeability and Affect Routes of Melanoma Metastasis. Cancer Discov :
Cañadas, Israel; Thummalapalli, Rohit; Kim, Jong Wook et al. (2018) Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Nat Med 24:1143-1150
Grasso, Michael; Estrada, Michelle A; Berrios, Kiara N et al. (2018) N-(7-Cyano-6-(4-fluoro-3-(2-(3-(trifluoromethyl)phenyl)acetamido)phenoxy)benzo[d]thiazol-2-yl)cyclopropanecarboxamide (TAK632) Promotes Inhibition of BRAF through the Induction of Inhibited Dimers. J Med Chem 61:5034-5046

Showing the most recent 10 out of 144 publications